Acta Mathematica

, Volume 175, Issue 1, pp 123–150 | Cite as

Self-dual lattices of typeA

  • Xiaoping Xu
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blake, I.F. &Mullin, R.C.,The Mathematical Theory of Coding. Academic Press, New York-London, 1975.MATHGoogle Scholar
  2. [2]
    Borcherds, R.E., The Leech lattice and other lattices. Ph.D. Dissertation, University of Cambridge, 1984.Google Scholar
  3. [3]
    —, Vertex algebras, Kac-Moody algebras, and the monster.Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068–3071.MathSciNetGoogle Scholar
  4. [4]
    Conway, J.H., A characterization of Leech's lattice.Invent. Math., 69 (1969), 137–142.CrossRefMathSciNetGoogle Scholar
  5. [5]
    —, Three lectures on exceptional groups, inFinite Simple Groups (G. Higman and M.B. Powell, eds.), Chapter 7, pp. 215–247. Academic Press, London-New York, 1971.Google Scholar
  6. [6]
    Conway, J.H. &Norton, S.P., Monstrous moonshine.Bull. London Math. Soc., 11 (1979), 308–339.MathSciNetMATHGoogle Scholar
  7. [7]
    Conway, J.H. &Sloane, N.J.A., Twenty-three constructions of the Leech lattice.Proc. Roy. Soc. London Ser. A, 381 (1982), 275–283.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    —, On the enumeration of lattices of determinant one.J. Number Theory, 15 (1982), 83–94.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    —,Sphere Packings, Lattices and Groups, Springer-Verlag, New York-Berlin, 1988.MATHGoogle Scholar
  10. [10]
    Dolan, L., Goddard, P. &Montague, P., Conformal field theory of twisted vertex operators.Nuclear Phys. B, 338 (1990), 529–601.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Dong, C. & Lepowsky, J., A Jacobi identity for relative twisted vertex operators. Preprint.Google Scholar
  12. [12]
    Feit, W., On integral representations of finite groups.Proc. London Math. Soc. (3), 29 (1974), 633–683.MATHMathSciNetGoogle Scholar
  13. [13]
    Frenkel, I.B., Lepowsky, J. &Meurman, A., A natural representation of the Fischer-Griess Monster with the modular functionJ as character.Proc. Nat. Acad. Sci. U.S.A., 81 (1984), 3256–3260.MathSciNetMATHGoogle Scholar
  14. [14]
    —,Vertex Operator Algebras and the Monster. Pure and Applied Math., 134. Academic Press, Boston, MA, 1988.MATHGoogle Scholar
  15. [15]
    Griess, R.L.,Jr., The friendly giant.Invent. Math., 69 (1982), 1–102.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Leech, J., Notes on sphere packings.Canad. J. Math., 19 (1967), 718–745.MathSciNetGoogle Scholar
  17. [17]
    Lepowsky, J. &Meurman, A., AnE 8-approach to the Leech lattice and the Conway group.J. Algebra, 77 (1982), 484–504.CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    Lindsey, J.H., A correlation betweenPSU 4(3), the Suzuki group, and the Conway group.Trans. Amer. Math. Soc., 157 (1971), 189–204.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    Meurman, A., Personal notes.Google Scholar
  20. [20]
    Niemeier, H.V., Definite quadratische Formen der Dimension 24 und Diskriminante 1.J. Number Theory, 5 (1973), 142–178.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Sloane, N.J.A., Codes overGF(4) and complex lattices.J. Algebra, 52 (1978), 168–181.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    —, Self-dual codes and lattices.Proc. Sympos. Pure Math., 34 (1979), 273–307.MATHMathSciNetGoogle Scholar
  23. [23]
    Tits, J., Four presentations of Leech's lattice, inFinite Simple Groups II, Proc. Sympos., Univ. of Durham, Durham, 1978 (M.J. Collins, ed.), pp. 303–307. Academic Press, London-New York, 1980.Google Scholar
  24. [24]
    Xu, X., Untwisted and twisted gluing techniques for constructing self-dual lattices. Ph.D. Dissertation, Rutgers University, 1992.Google Scholar
  25. [25]
    —, A gluing technique for constructing self-dual codes.J. Combin. Theory Ser. A, 66 (1994). 137–159.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    —, Central extensions of self-dual type-A complex lattices.Comm. Algebra, 22 (1994), 1281–1303.MATHMathSciNetGoogle Scholar
  27. [27]
    Xu, X., Lattice coset constructions of vertex operators. To appear inAlgebra Colloquium.Google Scholar
  28. [28]
    —, Analogue of vertex operator triality for ternary codes.J. Pure Appl. Algebra, 99 (1995), 53–111.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    Yoshiara, S., A lattice theoretical construction of a Gab of the Suzuki sporadic simple group.J. Algebra, 112 (1988), 198–239.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1995

Authors and Affiliations

  • Xiaoping Xu
    • 1
  1. 1.Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations