Acta Mathematica

, Volume 167, Issue 1, pp 229–285 | Cite as

Poincaré series forSO(n, 1)

  • J. Cogdell
  • I. Piatetski-Shapiro
  • J. S. Li
  • P. Sarnak
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, J. D., Discrete spectrum of the reductive dual pair (O(p, q), Sp(2m).Invent. Math., 74 (1983), 449–476.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Bump, D., Friedberg, S. &Goldfeld, D., Poincaré series and Kloostrman sums forSL(3, Z).Acta Arith., 50 (1988), 31–89.MathSciNetMATHGoogle Scholar
  3. [3]
    Cohen, P. & Sarnak, P.,Discrete Groups and Automorphic Forms. Notes, Stanford University, 1980.Google Scholar
  4. [4]
    Dixmier, J. &Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment differentiables.Bull. Sci. Math., 102 (1987), 307–330.MathSciNetGoogle Scholar
  5. [5]
    Elstrodt, J., Grunewald, F. &Mennicke, J., Poincaré series, Kloosterman sums, and eigenvalues of the Laplacian for congruence groups acting on hyperbolic spaces.C.R. Acad. Sci. Paris, 305 (1987), 577–581.MathSciNetMATHGoogle Scholar
  6. [6]
    Gelfand, I. M., Graev, M. I. &Piatetski-Shapiro, I. I.,Representation Theory and Automorphic Functions. W.B. Saunders & Co., Philadelphia, 1969.Google Scholar
  7. [7]
    Gradshteyn, I. S. &Ryzhik, I. M.,Tables of Integrals, Series and Products, Academic Press, New York, 1980.Google Scholar
  8. [8]
    Howe, R., θ-series and invariant theory.Proc. Sympos. Pure Math., 33: 1 (1979), 275–285.MATHGoogle Scholar
  9. [9]
    Howe, R.,L 2-duality in the stable range. Preprint.Google Scholar
  10. [10]
    Howe, R. &Piatetski-Shapiro, I. I., A counter example to the generalized Ramanujan conjecture for (quasi)-split groups.Proc. Sympos. Pure Math., 33: 1 (1979), 315–322.Google Scholar
  11. [11]
    Iwaniec, H., Non-holomorphic modular forms and their applications, inModular Forms, ed. R. A. Rankin, Ellis Horwood Ltd., W. Sussex, 1984.Google Scholar
  12. [12]
    —, Small eigenvalues of the Laplacian for Γ0(N).Acta Arith., 56 (1990), 65–82.MATHMathSciNetGoogle Scholar
  13. [13]
    Iwaniec, H., Spectral theory of automorphic functions and recent developments in analytic number theory.Proc. Internat. Congress Math., Berkeley, Ca., 1986, pp. 444–456.Google Scholar
  14. [14]
    Jacquet, H. &Shalika, J., On Euler products and the classification of automorphic representations.Amer. J. Math., 103 (1981), 499–558.MathSciNetMATHGoogle Scholar
  15. [15]
    Knapp, A.,Representation Theory of Semisimple Groups. Princeton Univ. Press, Princeton, 1986.MATHGoogle Scholar
  16. [16]
    Langlands, R. P.,On the Functional Equation Satisfied by Eisenstein Series. Lecture Notes in Math., 544. Springer Verlag, 1976.Google Scholar
  17. [17]
    Li, J.-S., Kloosterman-Selberg zeta functions on complex hyperbolic spaces. Preprint.Google Scholar
  18. [18]
    Li, J.-S., Piatetski-Shapiro, I. I. &Sarnak, P., Poincaré series forSO(n, 1), Proc. Indian Acad. Sci. Math. Sci., 97 (1987), 231–237.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Magnus, W., Oberhettinger, F. &Soni, R.,Formulas and Theorems for the Special Functions of Mathematical Physics, Springer Verlag, New York, 1966.MATHGoogle Scholar
  20. [20]
    Miatello, R. & Wallach, N., Automorphic forms constructed from Whittaker vectors. Preprint.Google Scholar
  21. [21]
    Millson, J., On the first Betti number of a constant negatively curved manifold.Ann. of Math., 104 (1976), 235–247.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Piatetski-Shapiro, I. I., Lectures on Poincaré series and Kloosterman sums over a function field. Preprint.Google Scholar
  23. [23]
    Rallis, S., On the Howe duality conjecture.Comput. Math., 51 (1984), 333–399.MATHMathSciNetGoogle Scholar
  24. [24]
    Rallis, S. &Schiffmann, G., Discrete spectrum of the Weil representation.Bull. Amer. Math. Soc., 83 (1977), 267–276.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Randol, B., Small eigenvalues of the Laplace operator on compact Riemann surfaces.Bull. Amer. Math. Soc., 80 (1974), 996–1000.MATHMathSciNetGoogle Scholar
  26. [26]
    Sarnak, P., The arithmetic and geometry of some hyperbolic three manifolds.Acta Math., 151 (1983), 253–295.MATHMathSciNetGoogle Scholar
  27. [27]
    Selberg, A., On the estimation of Fourier coefficients of modular forms.Number Theory: Proc. Sympos. Pure Math., 8 (1965), 1–15.MATHMathSciNetGoogle Scholar
  28. [28]
    Siegel, C. L., Indefinite quadratische Formen und Funktionen Theorie, I.Math. Ann., 124 (1951), 17–24; II.Math. Ann., 124 (1952), 364–387.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    —,Lectures on Advanced Analytic Number Theory. Tata Institute of Fundamental Research, Bombay, 1961.Google Scholar
  30. [30]
    Stevens, G., Poincaré series onGL(m) and Kloosterman sums.Math. Ann., 277 (1987), 25–51.CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    Wallach, N., Asymptotic expansions of generalized matrix entries of representations of real reductive groups, inLie Group Representations I. Proceedings, University of Maryland, 1982–1983. Lecture Notes in Math., 1024, pp. 287–369.Google Scholar
  32. [32]
    Weil, A., On some exponential sums.Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207.MATHMathSciNetGoogle Scholar
  33. [33]
    —, Sur la formule de Siegel dans la théorie des groupes classiques.Acta Math., 113 (1965), 1–87.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1991

Authors and Affiliations

  • J. Cogdell
    • 1
  • I. Piatetski-Shapiro
    • 2
    • 3
  • J. S. Li
    • 4
  • P. Sarnak
    • 5
  1. 1.Oklahoma State UniversityStillwaterUSA
  2. 2.Yale UniversityNew HavenUSA
  3. 3.Tel Aviv UniversityTel AvivIsrael
  4. 4.University of MarylandCollege ParkUSA
  5. 5.Stanford UniversityStanfordUSA

Personalised recommendations