Skip to main content

Advertisement

Log in

Hypoelliptic differential operators and nilpotent groups

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abrahams, R. &Robbin, J.,Transversal Mappings and Flows, W. A. Benjamin, Inc. New York, 1967.

    Google Scholar 

  2. Baouendi, M. S. &Goulaouic, G., Non-analytic hypeollipticity for some degenerate elliptic operators.Bull. Amer. Math. Soc., 78 (1972), 483–486.

    Article  MathSciNet  MATH  Google Scholar 

  3. Boutet de Monvel, L. &Trèves, F., On a class of pseudodifferential operators with double characteristics.Invent. Math., 24 (1974), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderón, A. P., Lebesgue spaces of differentiable functions and distributions.,Proc. Symp. Pure Math., Vol. 4, Amer. Math. Soc. 1961, 33–49.

  5. —, Intermediate spaces and interpolations, the complex method,Studia Math., 24 (1964), 113–190.

    MATH  MathSciNet  Google Scholar 

  6. Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups,Arkiv f. Mat., 13, 1975, 161–207.

    Article  MATH  MathSciNet  Google Scholar 

  7. Folland, G. B. &Kohn, J. J.,The Neumann Problem for the Cauchy-Riemann complex. Ann. of Math. Studies, 75 Princeton Univ. Press, Princeton, N.J. 1972.

    MATH  Google Scholar 

  8. Folland, G. B. &Stein, E. M., Estimates for the\(\bar \partial _b - complex\) and analysis on the Heisenberg group.Comm. Pure Appl. Math., 27 (1974), 429–522.

    MathSciNet  MATH  Google Scholar 

  9. Greiner, P. & Stein, E. M., A parametrix for the\(\bar \partial\) problem. Rencontre sur l'Analyse complexe à plusieurs variables..., Montreal, 1975, 49–63.

  10. Hörmander, L., Hypoelliptic second order differential equations.Acta Math., 119 (1967), 147–171.

    Article  MATH  MathSciNet  Google Scholar 

  11. Jacobson, N.,Lie algebras. Interscience Tracts in Pure and Applied Mathematics, Vol. 10, John Wiley and Sons, New York 1962.

    MATH  Google Scholar 

  12. Knapp, A. &Stein, E. M., Intertwining operators for semisimple groups.Ann. of Math., 93 (1971), 489–578.

    Article  MathSciNet  Google Scholar 

  13. Kohn, J. J., Boundaries of complex manifolds.Proc. Conference on Complex Manifolds, Minneapolis, 1964, 81–94.

  14. —, Complex hypoelliptic operators.Symposia Mathematica, 7 (1971), 459–468.

    MATH  MathSciNet  Google Scholar 

  15. —, Pseudo-differential operators and hypoellipticity.Proc. Symp. Pure Math, 23, Amer. Math. Soc., 1973, 61–69.

    MATH  MathSciNet  Google Scholar 

  16. Kobányi, A. &Vagi, S., Singular integrals in homogeneous spaces and some problems of classical analysis.Ann. Scuola Norm. Sup. Pisa, 25 (1971), 575–648.

    MathSciNet  Google Scholar 

  17. Lions, J. L. &Peetre, J., Sur une classe d'espaces d'interpolation.Publ. Math Inst. Hautes Etudes Sci. Paris, 19 (1964), 5–68.

    MathSciNet  MATH  Google Scholar 

  18. O'Neil, R., Two elementary theorems of the interpolation of linear operators,Proc. Amer. Math Soc., 17 (1966), 76–82.

    Article  MATH  MathSciNet  Google Scholar 

  19. Pukanszky, L.,Lecons sur les Representations des Groupes. Monographies de La Societé Mathématique de France, Dunod, Paris, 1967.

    MATH  Google Scholar 

  20. Radkevich, E. V., Hypoelliptic operators with multiple characteristics.Mat. Sbornik, 79 (121) (1969), 193–216. (Math. USSR Sbornik, 8 (1969), 181–205.

    MATH  Google Scholar 

  21. Serre, J.-P.,Lie algebras and Lie groups, Benjamin, New York, 1965.

    MATH  Google Scholar 

  22. Stein, E. M.,Singular intergrals and differentiability properties of functions. Princeton Univ. Press, Princton, 1970.

    Google Scholar 

  23. Taibleson, M. H., Translation invariant operators, duality, and interpolation, II.J. Math. Mech., 14 (1965), 821–840.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by National Science Foundation grants MPS72-05055 A02 and GP36318, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothschild, L.P., Stein, E.M. Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976). https://doi.org/10.1007/BF02392419

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392419

Keywords

Navigation