Advertisement

Acta Mathematica

, 123:253 | Cite as

Locally homogeneous complex manifolds

  • Phillip Griffiths
  • Wilfried Schmid
Article

Keywords

Manifold Complex Manifold Homogeneous Complex Homogeneous Complex Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1].
    Andreotti, A. &Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes.Bull. Soc. Math. France, 90 (1962), 193–259.MathSciNetMATHGoogle Scholar
  2. [2].
    Andreotti, A. &Vesentini, E., Carleman estimates for the Laplace-Beltrami operator on complex manifolds.Inst. Hautes Études Sci. Publ. Math., 25 (1965), 81–130.MathSciNetGoogle Scholar
  3. [3].
    Atiyah, M. F. &Singer, I. M., The index of elliptic operators I, III.Ann. of Math., 87 (1968), 484–530, and 546–604.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Borel, A., Kählerian coset spaces of semi-simple Lie groups.Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1140–1151.MathSciNetGoogle Scholar
  5. [5].
    Borel, A. & Weil, A., Representations linéaires et espaces homogènes kähleriennes des groupes de Lie compacts.Séminaire Bourbaki, (May 1954) exp. 100.Google Scholar
  6. [6].
    Borel, A. &Hirzebruch, F., Characteristic classes and homogeneous spaces I, II.Amer. J. Math., 80 (1958), 458–438 and 81 (1959), 315–382.MathSciNetGoogle Scholar
  7. [7].
    Bott, R., Homogeneous vector bundles.Ann. of Math., 66 (1957), 203–248.CrossRefMATHMathSciNetGoogle Scholar
  8. [8].
    Calabi, E. &Vesentini, E., On compact, locally symmetric Kähler manifolds.Ann. of Math., 71, (1960), 472–507.CrossRefMathSciNetGoogle Scholar
  9. [9].
    Grauert, H. &Reckziegel, H., Hermitesche Metriken und normale Familien holomopher Abbildungen.Math. Z., 89 (1965), 108–125.CrossRefMathSciNetMATHGoogle Scholar
  10. [10].
    Griffiths, P. A., Some results on locally homogeneous complex, manifolds.Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 413–416.MATHMathSciNetGoogle Scholar
  11. [11].
    —, Periods of integrals on algebraic manifolds I, II.Amer. J. Math., 90 (1968), 568–626.MATHMathSciNetGoogle Scholar
  12. [12].
    Griffiths, P. A., Periods of integrals on algebraic manifolds III. To appear.Google Scholar
  13. [13].
    Griffiths, P. A., Hermitian differential geometry and positive vector bundles. To appear.Google Scholar
  14. [14].
    Harish-Chandra, Discrete series for semisimple Lie groups II.Acta Math., 116 (1966), 1–111.CrossRefMathSciNetMATHGoogle Scholar
  15. [15].
    Helgason, S.,Differential geometry and symmetric spaces. Academic Press, New York 1962.MATHGoogle Scholar
  16. [16].
    Hirzebruch, F.,Neue topologische Methoden in der algebraischen Geometrie. Ergebnisse der Mathematik, 9 (1956).Google Scholar
  17. [17].
    Hirzebruch, F., Automorphe Formen und der Satz von Reimann-Roch.Symposium International de Topologica Algebraica, Universidad de Mexico (1958), 129–143.Google Scholar
  18. [18].
    Hodge, W. V. D.,The theory and applications of harmonic integrals. 2nd ed., Cambridge University Press (1959).Google Scholar
  19. [19].
    Ise, M., Generalized automorphic forms and certain holomorphic vector bundles.Amer. J. Math., 86 (1964), 70–108.MATHMathSciNetGoogle Scholar
  20. [20].
    Kobayashi, S., Invariant distances on complex manifolds, and holomorphic mappings.J. Math. Soc. Japan, 19 (1967), 460–480.MATHMathSciNetCrossRefGoogle Scholar
  21. [21].
    Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem.Ann. of Math., 74 (1961), 329–387.CrossRefMATHMathSciNetGoogle Scholar
  22. [22].
    Kwack, M. H.,Generalizations of the big Picard theorem. Thesis, Berkeley, 1968.Google Scholar
  23. [23].
    Langlands, R., The dimensions of spaces of automorphic forms.Amer. J. Math. 85 (1963), 99–125.MATHMathSciNetGoogle Scholar
  24. [24].
    —, Dimensions of spaces of automorphic forms. Algebraic groups and discontinuous subgroups.Proc. of Symposia in Pure Mathematics, vol. IX, Amer. Math. Soc., Providence, R. I (1966), 253–257.Google Scholar
  25. [25].
    Matsushima, Y. &Murakami, S., On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds.Ann. of Math., 78 (1963), 365–416.CrossRefMathSciNetGoogle Scholar
  26. [26].
    — On certain cohomology groups attached to Hermitian symmetric spaces.Osaka J. Math., 2 (1965), 1–35.MATHMathSciNetGoogle Scholar
  27. [27].
    Okamoto, K. &Ozeki, H., On square-integrable\(\bar \partial\) spaces attached to Hermitian symmetric spaces.Osaka J. Math., 4 (1967), 95–110.MathSciNetMATHGoogle Scholar
  28. [28].
    Schmid, W.,Homogeneous complex manifolds and representations of semisimple Lie groups. Thesis, Berkeley, 1967.Google Scholar
  29. [29].
    —, Homogeneous complex manifolds and representations of semisimple Lie groups.Proc. Nat. Acad. Sci. U.S.A., 59 (1968), 56–59.MATHMathSciNetGoogle Scholar
  30. [30].
    Stiefel, E., Kristallographische Bestimmung der Charactere der geschlossenen Lie'schen Gruppen.Comm. Math. Helv., 17 (1944), 165–200.MathSciNetGoogle Scholar
  31. [31].
    Wang, H. C., Closed manifolds with homogeneous complex structure.Amer. J. Math., 76 (1954), 1–32.MATHMathSciNetGoogle Scholar
  32. [32].
    Wu, H. H., Normal families of holomorphic mappings.Acta Math., 119 (1967), 193–233.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1969

Authors and Affiliations

  • Phillip Griffiths
    • 1
    • 2
  • Wilfried Schmid
    • 1
    • 2
  1. 1.Princeton UniversityPrinceton
  2. 2.Columbia UniversityNew York

Personalised recommendations