Acta Mathematica

, Volume 153, Issue 1, pp 279–301 | Cite as

L p and mean value properties of subharmonic functions on Riemannian manifolds

  • Peter Li
  • Richard Schoen


Manifold Riemannian Manifold Subharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, M., The Dirichlet problem at infinity for manifolds of negative curvature. To appear inJ. Differential Geom.Google Scholar
  2. [2]
    Anderson, M. & Schoen, R., Preprint.Google Scholar
  3. [3]
    Cheeger, J., Gromov, M. &Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds.J. Differential Geom., 17 (1983), 15–53.MathSciNetGoogle Scholar
  4. [4]
    Cheng, S. Y. &Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications.Comm. Pure Appl. Math., 28 (1975), 333–354.MathSciNetGoogle Scholar
  5. [5]
    Chung, L. O., Existence of harmonicL 1 functions in complete Riemannian manifolds. Unpublished.Google Scholar
  6. [6]
    Garnett, L., Foliations, the ergodic theorem and brownian motion. Preprint.Google Scholar
  7. [7]
    Greene, R. E. &Wu, H., Integrals of subharmonic functions on manifolds of nonnegative curvature.Invent. Math., 27 (1974), 265–298.CrossRefMathSciNetGoogle Scholar
  8. [8]
    —,Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, 699. Springer-Verlag, Berlin-Heidelberg-New York (1979).Google Scholar
  9. [9]
    Karp, L. & Li, P., The heat equation on complete Riemannian manifolds. Preprint.Google Scholar
  10. [10]
    Li, P. &Yau, S. T., Estimates of eigenvalues of a compact Riemannian manifold.Proc. Symp. Pure Math., 36 (1980), 205–239.MathSciNetGoogle Scholar
  11. [11]
    Strichartz, R., Analysis of the Laplacian on a complete Riemannian manifold.J. Funct. Anal., 52 (1983), 48–79.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Sullivan, D., Preprint.Google Scholar
  13. [13]
    Wu, H., On the volume of a noncompact manifold.Duke Math. J., 49 (1982), 71–78.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Yau, S. T., Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math., 28 (1975), 201–228.MATHMathSciNetGoogle Scholar
  15. [15]
    —, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J., 25 (1976), 659–670.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1984

Authors and Affiliations

  • Peter Li
    • 1
  • Richard Schoen
    • 2
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations