Advertisement

Acta Mathematica

, Volume 153, Issue 1, pp 47–116 | Cite as

On the vanishing of and spanning sets for Poincaré series for cusp forms

  • Irwin Kra
Article

Keywords

Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahlfors, L. V., Finitely generated Kleinian groups.Amer. J. Math., 86 (1964), 413–429 and 87 (1965), 759.MathSciNetGoogle Scholar
  2. [2]
    —, The structure of a finitely generated Kleinian group.Acta Math., 122 (1969), 1–17.MathSciNetGoogle Scholar
  3. [3]
    Bers, L., Inequalities for finitely generated Kleinian groups.J. Analyse Math., 18 (1967), 23–41.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    —, Poincaré series for Kleinian groups.Comm. Pure Appl. Math., 26 (1973), 667–672 and 27 (1974), 583.MATHMathSciNetGoogle Scholar
  5. [5]
    —, Automorphic forms for Schottky groups.Adv. in Math., 16 (1975), 332–361.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Cartan, H., Espaces fibrés analytiques, inSymposium Internacional de Topologia Algebraica. Univ. Nacional de México, 1958, 97–121.Google Scholar
  7. [7]
    Eichler, M., Eine Verallgemeinerung der Abelschen Integrale.Math. Z., 67 (1957). 267–278.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Grauert, H., Analytische Faserungen über holomorphvollständigen Räumen.Math. Ann., 135 (1958), 266–273.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Gunning, R. C. &Rossi, H.,Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs, New Jersey, 1965.MATHGoogle Scholar
  10. [10]
    Hejhal, D. A., Quelques remarques à propos des séries de Poincaré sur les groupes de Schottky.C. R. Acad. Sci. Paris Sér. I Math., 280 (1975), 341–344.MATHMathSciNetGoogle Scholar
  11. [11]
    —, Monodromy groups and Poincaré series.Bull. Amer. Math. Soc., 84 (1978), 339–376.MATHMathSciNetGoogle Scholar
  12. [12]
    Kra, I., On cohomology of Kleinian groups.Ann. of Math., 89 (1969), 533–556.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    —, On cohomology of Kleinian groups: II.Ann. of Math., 90 (1969), 575–589.CrossRefMathSciNetGoogle Scholar
  14. [14]
    —,Automorphic forms and Kleinian groups. Benjamin, Reading, Massachusetts, 1972.MATHGoogle Scholar
  15. [15]
    —, On the vaishing of Poincaré series of rational functions.Bull. Amer. Math. Soc., 8 (1983), 63–66.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Kra, I. &Maskit, B., The deformation space of a Kleinian group.Amer. J. Math., 103 (1981), 1065–1102.MathSciNetMATHGoogle Scholar
  17. [17]
    —, Bases for quadratic differentials.Comment. Math. Helv., 57 (1982), 603–626.MathSciNetMATHGoogle Scholar
  18. [18]
    Ljan, G. M., The kernel of the Poincaré θ-operator.Dokl. Akad. Nauk SSSR, 230 (1976), 269–270. English translation:Soviet Math. Dokl., 17 (1976), 1283–1285.MATHMathSciNetGoogle Scholar
  19. [19]
    Maskit, B., Decomposition of certain Kleinian groups.Acta Math., 130 (1973), 243–263.MATHMathSciNetGoogle Scholar
  20. [20]
    Metzger, T. A., The kernel of the Poincaré series operator.Proc. Amer. Math. Soc., 76 (1979), 289–292.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Nakada, M., Cohomology of finitely generated Kleinian groups with an invariant component.J. Math. Soc. Japan, 28 (1976), 699–711.MATHMathSciNetGoogle Scholar
  22. [22]
    —, Quasi-conformal stability of finitely generated function groups.Tôhoku Math. J., 30 (1978), 45–58.MATHMathSciNetGoogle Scholar
  23. [23]
    Petersson, H., Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe.Abh. Math. Sem. Univ. Hamburg, 12 (1938), 415–472.MATHCrossRefGoogle Scholar
  24. [24]
    Poincaré, H., Memoire sur les fonctions fuchsiennes.Acta Math., 1 (1882), 193–294.MathSciNetGoogle Scholar
  25. [25]
    Rudin, W.,Real and complex analysis. McGraw-Hill, New York and Sidney, 1966.MATHGoogle Scholar
  26. [26]
    Weil, A., Remarks on cohomology of groups.Ann. of Math., 80 (1964), 149–157.CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    Wolpert, S., The Fenchel-Nielsen deformation.Ann. of Math., 115 (1982), 501–528.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1984

Authors and Affiliations

  • Irwin Kra
    • 1
  1. 1.State University of New York at Stony BrookLong IslandUSA

Personalised recommendations