Acta Mathematica

, Volume 153, Issue 1, pp 47–116 | Cite as

On the vanishing of and spanning sets for Poincaré series for cusp forms

  • Irwin Kra
Article

Keywords

Cusp Form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahlfors, L. V., Finitely generated Kleinian groups.Amer. J. Math., 86 (1964), 413–429 and 87 (1965), 759.MathSciNetGoogle Scholar
  2. [2]
    —, The structure of a finitely generated Kleinian group.Acta Math., 122 (1969), 1–17.MathSciNetGoogle Scholar
  3. [3]
    Bers, L., Inequalities for finitely generated Kleinian groups.J. Analyse Math., 18 (1967), 23–41.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    —, Poincaré series for Kleinian groups.Comm. Pure Appl. Math., 26 (1973), 667–672 and 27 (1974), 583.MATHMathSciNetGoogle Scholar
  5. [5]
    —, Automorphic forms for Schottky groups.Adv. in Math., 16 (1975), 332–361.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Cartan, H., Espaces fibrés analytiques, inSymposium Internacional de Topologia Algebraica. Univ. Nacional de México, 1958, 97–121.Google Scholar
  7. [7]
    Eichler, M., Eine Verallgemeinerung der Abelschen Integrale.Math. Z., 67 (1957). 267–278.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Grauert, H., Analytische Faserungen über holomorphvollständigen Räumen.Math. Ann., 135 (1958), 266–273.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Gunning, R. C. &Rossi, H.,Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs, New Jersey, 1965.MATHGoogle Scholar
  10. [10]
    Hejhal, D. A., Quelques remarques à propos des séries de Poincaré sur les groupes de Schottky.C. R. Acad. Sci. Paris Sér. I Math., 280 (1975), 341–344.MATHMathSciNetGoogle Scholar
  11. [11]
    —, Monodromy groups and Poincaré series.Bull. Amer. Math. Soc., 84 (1978), 339–376.MATHMathSciNetGoogle Scholar
  12. [12]
    Kra, I., On cohomology of Kleinian groups.Ann. of Math., 89 (1969), 533–556.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    —, On cohomology of Kleinian groups: II.Ann. of Math., 90 (1969), 575–589.CrossRefMathSciNetGoogle Scholar
  14. [14]
    —,Automorphic forms and Kleinian groups. Benjamin, Reading, Massachusetts, 1972.MATHGoogle Scholar
  15. [15]
    —, On the vaishing of Poincaré series of rational functions.Bull. Amer. Math. Soc., 8 (1983), 63–66.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Kra, I. &Maskit, B., The deformation space of a Kleinian group.Amer. J. Math., 103 (1981), 1065–1102.MathSciNetMATHGoogle Scholar
  17. [17]
    —, Bases for quadratic differentials.Comment. Math. Helv., 57 (1982), 603–626.MathSciNetMATHGoogle Scholar
  18. [18]
    Ljan, G. M., The kernel of the Poincaré θ-operator.Dokl. Akad. Nauk SSSR, 230 (1976), 269–270. English translation:Soviet Math. Dokl., 17 (1976), 1283–1285.MATHMathSciNetGoogle Scholar
  19. [19]
    Maskit, B., Decomposition of certain Kleinian groups.Acta Math., 130 (1973), 243–263.MATHMathSciNetGoogle Scholar
  20. [20]
    Metzger, T. A., The kernel of the Poincaré series operator.Proc. Amer. Math. Soc., 76 (1979), 289–292.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Nakada, M., Cohomology of finitely generated Kleinian groups with an invariant component.J. Math. Soc. Japan, 28 (1976), 699–711.MATHMathSciNetGoogle Scholar
  22. [22]
    —, Quasi-conformal stability of finitely generated function groups.Tôhoku Math. J., 30 (1978), 45–58.MATHMathSciNetGoogle Scholar
  23. [23]
    Petersson, H., Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe.Abh. Math. Sem. Univ. Hamburg, 12 (1938), 415–472.MATHCrossRefGoogle Scholar
  24. [24]
    Poincaré, H., Memoire sur les fonctions fuchsiennes.Acta Math., 1 (1882), 193–294.MathSciNetGoogle Scholar
  25. [25]
    Rudin, W.,Real and complex analysis. McGraw-Hill, New York and Sidney, 1966.MATHGoogle Scholar
  26. [26]
    Weil, A., Remarks on cohomology of groups.Ann. of Math., 80 (1964), 149–157.CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    Wolpert, S., The Fenchel-Nielsen deformation.Ann. of Math., 115 (1982), 501–528.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1984

Authors and Affiliations

  • Irwin Kra
    • 1
  1. 1.State University of New York at Stony BrookLong IslandUSA

Personalised recommendations