Acta Mathematica

, Volume 96, Issue 1, pp 99–123 | Cite as

Oscillation and disconjugacy for linear differential equations with almost periodic coefficients

  • Lawrence Markus
  • Richard A. Moore


Differential Equation Linear Differential Equation Periodic Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    L. Amerio,Conference on Wawe Motion and Vibration Theory, University of Maryland, 1955.Google Scholar
  2. [2].
    S. Bochner Homogeneous systems of differential equations with almost periodic coefficients.Jour., London Math. Soc., 8 (1933), 283–288.MATHGoogle Scholar
  3. [3].
    A. Calanay On linear differential equations with almost periodic coefficients.Doklady Akad. Nauk, SSSR, 88 (1953), 419–422.MathSciNetGoogle Scholar
  4. [4].
    J. Favard, Sur les équations différentielles linéaires à coefficients presque-périodique.Acta Math., 51 (1928), 31–81.Google Scholar
  5. [5].
    J. Favard,Leçons sur les fonctions presque-périodiques. Paris, 1933.Google Scholar
  6. [6].
    L. Green, Surfaces without conjugate points.TAMS, 76 (1954), 529–546.CrossRefMATHGoogle Scholar
  7. [7].
    A. Halanay, Solutions presque-périodique de l’équation de Riccati.Acad. Rep. Pop. Romane Stud. Cerc. Mat., 4 (1953), 345–354.MATHMathSciNetGoogle Scholar
  8. [8].
    G. Hamel, Über die lineare Differentialgleichung zweiter Ordnung mit periodischen Koeffizienten.Math. Ann., 73 (1913), 371–412.CrossRefMATHMathSciNetGoogle Scholar
  9. [9].
    W. Leighton, Principal quadratic functionals and self-adjoint second-order differential equations.Proc. Nat. Acad. Sci., 35 (1949), 192–193.MATHMathSciNetGoogle Scholar
  10. [10].
    L. Markus, Continuous matrices and the stability of differential systems.Math. Zeitschr., 62 (1955), 310–319.CrossRefMATHMathSciNetGoogle Scholar
  11. [11].
    R. Moore, The behavior of solutions of a linear differential equation of second order.Pac. J. Math., 5 (1955), 125–145.MATHGoogle Scholar
  12. [12].
    R. Moore, Least eigenvalue of Hill’s equation. (To appear soon.)Google Scholar
  13. [13].
    C. R. Putnam andA. Wintner, Linear differential equations with almost periodic or Laplace transform coefficients.Am. J. Math., 73 (1951), 792–806.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1956

Authors and Affiliations

  • Lawrence Markus
    • 1
  • Richard A. Moore
    • 1
  1. 1.Yale UniversityUSA

Personalised recommendations