Advertisement

Acta Mathematica

, Volume 149, Issue 1, pp 41–69 | Cite as

Isometry groups of simply connected manifolds of nonpositive curvature II

  • Patrick Eberlein
Article

Keywords

Manifold Isometry Group Nonpositive Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ballmann, W.,Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Dissertation, Univ. of Bonn, 1978.Google Scholar
  2. [2]
    Ballmann, W.,Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Bonner Math. Schriften, Vol. 113, 1978.Google Scholar
  3. [3]
    Bishop, R. &O’Neill, B., Manifolds of negative curvature.Trans. Amer. Math. Soc., 145 (1969), 1–49.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Borel, A., Compact Clifford-Klein forms of symmetric spaces.Topology, 2 (1963), 111–122.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    —, Density properties for certain subgroups of semi-simple groups without compact components.Ann. of Math., 72(1) (1960), 179–188.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Cartan, E.,Leçons sur la géométrie des espaces de Riemann. Paris, Gauthier-Villars, 1946.MATHGoogle Scholar
  7. [7]
    —, Sur une classe remarquable d’espaces de Riemann.Bull. Soc. Math. France, 54 (1926), 214–264 and 55 (1927), 114–134.MATHMathSciNetGoogle Scholar
  8. [8]
    —, Sur certaines formes Riemanniennes remarquables des géométries à group fondamental simple.Ann. École Norm., 44 (1927), 345–467.MATHMathSciNetGoogle Scholar
  9. [9]
    Cartan, E. Les espaces Riemanniens symétriques.Verh. Int. Math. Kongr., I.Zürich (1932), 152–161.Google Scholar
  10. [10]
    Chen, S., Duality condition and Property (S).Pacific J. Math., 98 (1982), 313–322.MATHMathSciNetGoogle Scholar
  11. [11]
    Chen, S. &Eberlein, P., Isometry groups of simply connected manifolds of nonpositive curvature.Illinois J. Math., 24 (1) (1980), 73–103.MathSciNetMATHGoogle Scholar
  12. [12]
    Dani, S. G., A simple proof of Borel’s density theorem.Math. Z., 174 (1980), 81–94.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Eberlein, P., Geodesic flows on negatively curved manifolds, I.Ann. of Math., 95 (1972), 492–510.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    —, Geodesic flows on negatively curved manifolds, II.Trans. Amer. Math. Soc., 178 (1973), 57–82.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    —, Lattices in spaces of nonpositive curvature.Ann. of Math., 111 (1980), 435–476.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Eberlein, P. &O’Neill, B., Visibility manifolds.Pacific J. Math., 46 (1973), 45–109.MathSciNetMATHGoogle Scholar
  17. [17]
    Goto, M. &Goto, M., Isometry groups of negatively pinched 3-manifolds.Hiroshima Math. J., 9 (2) (1979), 313–319.MathSciNetMATHGoogle Scholar
  18. [18]
    Gromoll, D. &Wolf, J., Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature.Bull. Amer Math. Soc., 77 (1971), 545–552.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Heintze, E., Personal communication.Google Scholar
  20. [20]
    Heintze, E.,Mannigfaltigkeiten negativer Krümmung. Habilitationschrift, University of Bonn, 1976.Google Scholar
  21. [21]
    Helgason, S.,Differential geometry and symmetric spaces. Academic Press, New York, 1962.MATHGoogle Scholar
  22. [22]
    Kobayashi, S., Fixed points of isometries.Nagoya Math. J., 13 (1958), 63–68.MATHMathSciNetGoogle Scholar
  23. [23]
    —,Transformation groups in differential geometry. Springer-Verlag, New York, 1972.MATHGoogle Scholar
  24. [24]
    Kobayashi, S. &Nomizu, K.,Foundations of differential geometry, Vol. 1. J. Wiley and Sons, New York, 1963, pp. 179–193.Google Scholar
  25. [25]
    Lawson, H. B. &Yau, S.-T., Compact manifolds of nonpositive curvature,J. Differential Geom., 7 (1972), 211–228.MathSciNetMATHGoogle Scholar
  26. [26]
    Mostow, G. D.,Strong rigidity of locally symmetric spaces. Annals of Math. Studies, number 78. Princeton University Press, Princeton, New Jersey, 1973.MATHGoogle Scholar
  27. [27]
    Raghunathan, M. S.,Discrete subgroups of Lie groups. Springer-Verlag, New York, 1972.MATHGoogle Scholar
  28. [28]
    Shimizu, H., On discontinuous groups operating on the product of upper half planes.Ann. of Math., 77 (1) (1963), 33–71.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    Wolf, J., Homogeneity and bounded isometries in manifolds of negative curvature.Illinois J. Math., 8 (1964), 14–18.MATHMathSciNetGoogle Scholar
  30. [30]
    Wolf, J.,Spaces of constant curvature. 2nd edition, published by the author. Berkeley, California, 1972.Google Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • Patrick Eberlein
    • 1
  1. 1.University of North CarolinaChapel HillUSA

Personalised recommendations