Acta Mathematica

, Volume 149, Issue 1, pp 41–69 | Cite as

Isometry groups of simply connected manifolds of nonpositive curvature II

  • Patrick Eberlein
Article

Keywords

Manifold Isometry Group Nonpositive Curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ballmann, W.,Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Dissertation, Univ. of Bonn, 1978.Google Scholar
  2. [2]
    Ballmann, W.,Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Bonner Math. Schriften, Vol. 113, 1978.Google Scholar
  3. [3]
    Bishop, R. &O’Neill, B., Manifolds of negative curvature.Trans. Amer. Math. Soc., 145 (1969), 1–49.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Borel, A., Compact Clifford-Klein forms of symmetric spaces.Topology, 2 (1963), 111–122.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    —, Density properties for certain subgroups of semi-simple groups without compact components.Ann. of Math., 72(1) (1960), 179–188.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Cartan, E.,Leçons sur la géométrie des espaces de Riemann. Paris, Gauthier-Villars, 1946.MATHGoogle Scholar
  7. [7]
    —, Sur une classe remarquable d’espaces de Riemann.Bull. Soc. Math. France, 54 (1926), 214–264 and 55 (1927), 114–134.MATHMathSciNetGoogle Scholar
  8. [8]
    —, Sur certaines formes Riemanniennes remarquables des géométries à group fondamental simple.Ann. École Norm., 44 (1927), 345–467.MATHMathSciNetGoogle Scholar
  9. [9]
    Cartan, E. Les espaces Riemanniens symétriques.Verh. Int. Math. Kongr., I.Zürich (1932), 152–161.Google Scholar
  10. [10]
    Chen, S., Duality condition and Property (S).Pacific J. Math., 98 (1982), 313–322.MATHMathSciNetGoogle Scholar
  11. [11]
    Chen, S. &Eberlein, P., Isometry groups of simply connected manifolds of nonpositive curvature.Illinois J. Math., 24 (1) (1980), 73–103.MathSciNetMATHGoogle Scholar
  12. [12]
    Dani, S. G., A simple proof of Borel’s density theorem.Math. Z., 174 (1980), 81–94.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Eberlein, P., Geodesic flows on negatively curved manifolds, I.Ann. of Math., 95 (1972), 492–510.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    —, Geodesic flows on negatively curved manifolds, II.Trans. Amer. Math. Soc., 178 (1973), 57–82.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    —, Lattices in spaces of nonpositive curvature.Ann. of Math., 111 (1980), 435–476.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Eberlein, P. &O’Neill, B., Visibility manifolds.Pacific J. Math., 46 (1973), 45–109.MathSciNetMATHGoogle Scholar
  17. [17]
    Goto, M. &Goto, M., Isometry groups of negatively pinched 3-manifolds.Hiroshima Math. J., 9 (2) (1979), 313–319.MathSciNetMATHGoogle Scholar
  18. [18]
    Gromoll, D. &Wolf, J., Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature.Bull. Amer Math. Soc., 77 (1971), 545–552.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Heintze, E., Personal communication.Google Scholar
  20. [20]
    Heintze, E.,Mannigfaltigkeiten negativer Krümmung. Habilitationschrift, University of Bonn, 1976.Google Scholar
  21. [21]
    Helgason, S.,Differential geometry and symmetric spaces. Academic Press, New York, 1962.MATHGoogle Scholar
  22. [22]
    Kobayashi, S., Fixed points of isometries.Nagoya Math. J., 13 (1958), 63–68.MATHMathSciNetGoogle Scholar
  23. [23]
    —,Transformation groups in differential geometry. Springer-Verlag, New York, 1972.MATHGoogle Scholar
  24. [24]
    Kobayashi, S. &Nomizu, K.,Foundations of differential geometry, Vol. 1. J. Wiley and Sons, New York, 1963, pp. 179–193.Google Scholar
  25. [25]
    Lawson, H. B. &Yau, S.-T., Compact manifolds of nonpositive curvature,J. Differential Geom., 7 (1972), 211–228.MathSciNetMATHGoogle Scholar
  26. [26]
    Mostow, G. D.,Strong rigidity of locally symmetric spaces. Annals of Math. Studies, number 78. Princeton University Press, Princeton, New Jersey, 1973.MATHGoogle Scholar
  27. [27]
    Raghunathan, M. S.,Discrete subgroups of Lie groups. Springer-Verlag, New York, 1972.MATHGoogle Scholar
  28. [28]
    Shimizu, H., On discontinuous groups operating on the product of upper half planes.Ann. of Math., 77 (1) (1963), 33–71.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    Wolf, J., Homogeneity and bounded isometries in manifolds of negative curvature.Illinois J. Math., 8 (1964), 14–18.MATHMathSciNetGoogle Scholar
  30. [30]
    Wolf, J.,Spaces of constant curvature. 2nd edition, published by the author. Berkeley, California, 1972.Google Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • Patrick Eberlein
    • 1
  1. 1.University of North CarolinaChapel HillUSA

Personalised recommendations