Acta Mathematica

, Volume 125, Issue 1, pp 269–298 | Cite as

Tauberian theorems for multivalent functions

  • W. K. Hayman


Tauberian Theorem Multivalent Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Carleson, L., On convergence and growth of partial sums of Fourier series.Acta Math., 116 (1966), 135–157.CrossRefMATHMathSciNetGoogle Scholar
  2. [2].
    Entire Functions and related parts of Analysis.Proceedings of symposia in Pure Mathematics, Volume XI, Amer. Math. Soc. Problems, p. 532, no. 2.Google Scholar
  3. [3].
    Halász, G., Tauberian theorems for univalent functions.Studia Sci. Math. Hung., 4 (1969), 421–440.MATHGoogle Scholar
  4. [4].
    Hayman, W. K.,Multivalent functions, Cambridge 1958. Referred to as M. F. in the text.Google Scholar
  5. [5].
    Pommerenke, C., Über die Mittelwerte und Koeffizienten multivalenter Funktionen.Math. Ann., 145 (1961/62), 285–96.CrossRefMathSciNetGoogle Scholar
  6. [6].
    Sjölin, P., An inequality of Paley and convergence a.e. of Walsh-Fourier series.Ark. Mat., 7 (1968), 551–570.Google Scholar
  7. [7].
    Titchmarsh, E. C.,The theory of functions. 2nd edn. Oxford 1939.Google Scholar
  8. [8].
    Young, W. H., On restricted Fourier series and the convergence of power series.Proc. London Math. Soc., 17 (1918), 353–366.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1970

Authors and Affiliations

  • W. K. Hayman
    • 1
  1. 1.Imperial CollegeLondonEngland

Personalised recommendations