Skip to main content
Log in

The regularity of free boundaries in higher dimensions

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. Agmon, S., Douglis, A. &Nirenberg, L., Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions.Comm. Pure Appl. Math., 12 (1959), 623–727.

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H. &Kinderlehrer, D., The Smoothness of Solutions to Nonlinear Variational Inequalities.Indiana Univ. Math. J., 23, 9 (March 1974), 831–844.

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H. &Stampacchia, C., Sur la regularite de la solution d'inequations elliptiques.Gull. Soc. Math. France, 96 (1968), 153–180.

    MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., The smoothness of the free surface in a filtration problem.Arch. Rational Mech. Anal. (1977).

  5. Caffarelli, L. &Riviere, N. M., On the smoothness and analyticity of free boundaries in variational inequalities.Ann. Scuola Norm. sup. Pisa, Sci. Fis. Mat., (Ser. IV), 3 (1976), 289–310.

    MathSciNet  MATH  Google Scholar 

  6. — The smoothness of the elastic-plastic free boundary of a twisted bar.Proc. Amer. Math. Soc., 63, (1977), 56–58.

    Article  MathSciNet  MATH  Google Scholar 

  7. Duvaut, G., Resolution d'un probleme de Stefan (Fusion d'un bloe de glace a zero degreé).C.R. Acad. Sci., Paris, sèr A.-B., 276 (1973), 1461–1463.

    MATH  MathSciNet  Google Scholar 

  8. Friedman, A., The shape and smoothness of the free boundary for some elliptic variational inequalities. To appear.

  9. Friedman, A. &Kinderlehrer, D., A one phase Stefan problem.Indiana Univ. Math. J., 24 (1975), 1005–1035.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kemper, J., Temperatures in several variables: Kernel functions, representations and parabolic boundary values.Trans. Amer. Math. Soc., 167 (1972), 243–261.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kinderlehrer D., How a minimal surface leaves an obstacle.Acta Math., 130, (1973), 221–242.

    MATH  MathSciNet  Google Scholar 

  12. Kinderlehrer, D. & Nirenberg, L., Regularity in Free Boundary Problems.Ann. Scuola Norm. sup. Pisa Sci. Fis. Mat. To appear.

  13. Lewy, H., On the reflection laws of second order differential equations in two independent variables.Bull. Amer. Math. Soc., 65 (1959), 37–58.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lewy, H. &Stampacchia, G., On the regularity of the solution of a variational inequality.Comm. Pure Appl. Math., 22 (1969), 153–188.

    MathSciNet  MATH  Google Scholar 

  15. Nitsche, J. C. C., Variational problems with inequalities as boundary conditions or How to fashion a cheap hat for Giacometti's brother.Arch Rational Mech. Anal., 35 (1969), 83–113.

    Article  MATH  MathSciNet  Google Scholar 

  16. Serrin, J., On the Harnack inequality for linear elliptic equations.J. Analyse, 4 (1954–56), 292–308.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Supported in part by N.S.F. Grant 74 06 375 A01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarelli, L.A. The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184 (1977).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: