Skip to main content
Log in

Autour du théorème de Bombieri-Vinogradov

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Bombieri, E., On the large sieve.Mathematika, 12 (1965), 201–225.

    MATH  MathSciNet  Google Scholar 

  2. Chen, J. R., On the Goldbach’s problem and the sieve methods.Sci. Sinica, 21 (1978) 701–739.

    MATH  MathSciNet  Google Scholar 

  3. Deligne, P., Applications de la formule des traces aux sommes trigonométriques.Séminaire de géométrie algébrique du Bois-Marie, SGA 41/2, p. 168–232.Lecture Notes in Mathematics 569. Springer Verlag, 1977.

  4. Deshouillers, J.-M. &Iwaniec, H., Kloosterman sums and the Fourier coefficients of cusp forms.Invent. Math., 70 (1982), 219–288.

    Article  MATH  MathSciNet  Google Scholar 

  5. Elliott, P. D. T. A. &Halberstam, H., A conjecture in prime number theory.Symposia Mathematica, vol. IV, I.N.D.A.M. Rome 1968–69), 59–72.

    Google Scholar 

  6. Fouvry, E., Répartition des suites dans les progressions arithmétiques.Acta Arith., 41 (1982), 49–72.

    MathSciNet  Google Scholar 

  7. Fouvry, E., Repartition des suites dans les progressions arithmétiques — Résultats du type Bombieri-Vinogradov avec exposant supérieur à 1/2.Thèse de Doctorat d’Etat ès Sciences, Université de Bordeaux I (1981).

  8. Fouvry, E. &Iwaniec, H., On a theorem of Bombieri-Vinogradov type.Mathematika, 27, (1980), 135–172.

    MATH  MathSciNet  Google Scholar 

  9. —, Primes in arithmetic progressions.Acta Arith., 42 (1983), 19

    MathSciNet  Google Scholar 

  10. Gallagher, P. X., Bombieri’s mean value theorem.Mathematika, 15 (1968), 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  11. Halberstam, H. &Richert, H.-E.,Sieve Methods. Academic Press, London, New York, 1974.

    MATH  Google Scholar 

  12. Heath-Brown, D. R., Sieve identities and gaps between primes.Journées Arithmétiques de Metz (1981).Astérisque 94.

  13. Hooley, C., On the greatest prime factor of a cubic polynomial.J. Reine Angew. Math., 303/304 (1978), 21–50.

    MathSciNet  Google Scholar 

  14. Iwaniec, H., A new form of the error term in the linear sieve.Acta Arith., 37 (1980), 307–320.

    MATH  MathSciNet  Google Scholar 

  15. Linnik, Yu. V.,The dispersion method in binary additive problems. AMS Translations of Math. Monographs, no 4. Providence, Rhode Island, 1963.

  16. Motohashi, Y., An induction principle for the generalizations of Bombieri’s prime number theorem.Proc. Japan Acad., 52 (1976), 273–275.

    Article  MATH  MathSciNet  Google Scholar 

  17. Serre, J.-P., Majorations de sommes exponentielles.Journées Arithmétiques de Caen. Astérisque 41/42 (1977), 111–126.

    MathSciNet  Google Scholar 

  18. Vaughan, R. C.,On the estimation of trigonometric sums over primes and related questions. Institut Mittag-Leffler Report no 9 (1977).

  19. —, An elementary method in prime number theory.Acta Arith., 37 (1980), 111–115.

    MATH  MathSciNet  Google Scholar 

  20. Vinogradov, A. I., L’hypothèse de densité pour les sériesL de Dirichlet (en russe).Izv. Akad. Nauk SSSR, Ser. Math., 29 (1965), 903–904. Corrigendum:ibid. Izv. Akad. Nauk SSSR, Ser. Math., 30 (1966), 719–720.

    MATH  Google Scholar 

  21. Wolke, D., Über die mittlere Verteilung der Werte zahlentheoretischen Funktionen aus Restklassen I.Math. Ann., 202 (1973, 1–25. II.ibid. Izv. Akad. Nauk SSSR, Ser. Math., 204 (1973), 145–153.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratoire associé au C.N.R.S. no 226.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouvry, E. Autour du théorème de Bombieri-Vinogradov. Acta Math 152, 219–244 (1984). https://doi.org/10.1007/BF02392198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392198

Navigation