Acta Mathematica

, Volume 133, Issue 1, pp 1–25 | Cite as

Polytope pairs and their relationship to linear programming

  • Victor Klee
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Barnette, D. W., The minimum number of vertices of a simple polytope.Israel J. Math., 10 (1971), 121–125.MATHMathSciNetGoogle Scholar
  2. [2].
    — Graph theorems for manifolds.Israel J. Math., 16 (1973), 62–72.MATHMathSciNetGoogle Scholar
  3. [3].
    Brown, W. G., Historical note on a recurrent combinatorial problem.Amer. Math. Monthly, 72 (1965), 973–977.CrossRefMATHMathSciNetGoogle Scholar
  4. [4].
    Bruggesser, H. &Mani, P., Shellable decompositions of cells and spheres.Math. Scand., 29 (1972), 197–205.MathSciNetMATHGoogle Scholar
  5. [5].
    Dantzig, G. B.,Linear Programming and Extensions. Princeton Univ. Press, Princeton, N.J., 1963.MATHGoogle Scholar
  6. [6].
    — Eight unsolved problems from mathematical programming.Bull. Amer. Math. Soc., 70, (1964), 499–500.CrossRefMathSciNetGoogle Scholar
  7. [7].
    Gale, D., Neighboring vertices on a convex polyhedron.Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Ann. of Math. Studies 38 (1956), 255–263, Princeton Univ. Press, Princeton, N.J.Google Scholar
  8. [8].
    — Neighborly and cyclic polytopes.Convexity (V. Klee, ed.), Proc. Symp. Pure Math., 7 (1963), 255–232, Amer. Math. Soc., Providence, T.I.Google Scholar
  9. [9].
    — On the number of faces of a convex polytope.Canadian J. Math., 16 (1964), 12–17.MATHMathSciNetGoogle Scholar
  10. [10].
    Grünbaum, B.,Convex Polytopes. Interscience-Wiley, London, 1967.MATHGoogle Scholar
  11. [11].
    Grünbaum, B. &Sreedharan, V., An enumeration of simplicial 4-polytopes with 8 vertices.J. Combinatorial Theory, 2 (1967), 437–465.MathSciNetMATHGoogle Scholar
  12. [12].
    Kirkman, T. P., On the enumeration ofX-edra having triedal summits and an (x−1)-gonal base.Philos. Trans. Royal Soc. London Ser A, 146 (1856), 399–411.Google Scholar
  13. [13].
    — On the partitions of theR-pyramid, being the first class ofR-gonousX-edra.Philos. Trans. Royal. Soc. London Ser. A, 148 (1858), 145–161.Google Scholar
  14. [14].
    Klee, V., Diameters of polyhedral graphs.Canadian J. Math., 16 (1964), 602–614.MATHMathSciNetGoogle Scholar
  15. [15].
    — On the number of vertices of a convex polytope.Canadian J. Math., 16 (1964), 701–720.MATHMathSciNetGoogle Scholar
  16. [16].
    — Convex polytopes and linear programming.Procedings of the IBM Scientific Computing Symposium on Combinatorial Problems March 16–18, 1964, 123–158, IBM Data Processing Division, White Plains, N.Y., 1966.Google Scholar
  17. [17].
    — A comparison of primal and dual methods for linear programming.Numer. Math., 9 (1966), 227–235.CrossRefMATHMathSciNetGoogle Scholar
  18. [18].
    Klee, V. &Minty, G. J., How good is the simplex algorithm?Inequalities III (O. Shisha, ed.), 159–175. Academic Press, N. Y., 1972.Google Scholar
  19. [19].
    Klee, V. &Walkup, D. W., Thed-step conjecture for polyhedra of dimensiond<6.Acta Math., 117 (1967), 53–78.MathSciNetMATHGoogle Scholar
  20. [20].
    Maňas, M. &Nedoma, J., Finding all vertices of a convex polyhedron.Numer. Math., 12 (1968), 226–229.CrossRefMathSciNetMATHGoogle Scholar
  21. [21].
    Mattheiss, T. H., An algorithm for determining irrelevant constraints and all vertices in systems of linear inequalities.Operations Res., 21 (1973), 247–260.MATHMathSciNetCrossRefGoogle Scholar
  22. [22].
    McMullen, P., The maximum number of faces of a convex polytope.Mathematika, 17 (1960), 179–184.MathSciNetCrossRefGoogle Scholar
  23. [23].
    Motzkin, T. S., Cooperative classes of finite sets in one and more dimensions.J. Combinatorial Theory, 3 (1967), 244–251.MATHMathSciNetGoogle Scholar
  24. [24].
    Motzkin, T. S. &O'Neil, P. E., Bounds assuring subsets in convex position.J. Combinatorial Theory, 3 (1967), 252–255.MathSciNetMATHGoogle Scholar
  25. [25].
    Ordman, E., Algebraic characterization of some classical combinatorial problems.Amer. Math. Monthly, 78 (1971), 961–970.CrossRefMATHMathSciNetGoogle Scholar
  26. [26].
    Rademacher, H., On the number of certain types of polyhedra.Illinois J. Math., 9 (1965), 361–380.MATHMathSciNetGoogle Scholar
  27. [27].
    Sallee, G. T., Incidence graphs of convex polytopes.J. Combinatorial Theory, 2 (1967), 466–506.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1974

Authors and Affiliations

  • Victor Klee
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations