Acta Mathematica

, Volume 134, Issue 1, pp 239–274 | Cite as

A generalization to overdetermined systems of the notion of diagonal operators

II.Hyperbolic operators
  • Barry Mackichan


Cauchy Problem Vector Bundle Normal Bundle Pseudodifferential Operator OVERDETERMINED System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Andreotti, A. &Hill, C. D., E. E. Levi convexity and the Hans Lewy problem, Part I: Reduction to vanishing theorems.Ann. Sc. Norm. Sup. Pisa, 26 (1972), 325–363.MATHMathSciNetGoogle Scholar
  2. [2].
    Andreotti, A., Hill, C. D., Lojasiewicz, S. & MacKichan, B., Complexes of differential operators, I.Ann. Sc. Norm. Sup. Pisa, to appear.Google Scholar
  3. [3].
    Goldschmidt, H., Existence theorems for analytic linear partial differential equations.Ann. of Math., 86 (1967), 246–270.MATHMathSciNetCrossRefGoogle Scholar
  4. [4].
    Guillemin, V., Some algebraic results concerning the characteristics of overdetermined partial differential equations.Amer. J. Math., 90 (1968), 270–284.MATHMathSciNetCrossRefGoogle Scholar
  5. [5].
    Guillemin, V., unpublished notes.Google Scholar
  6. [6].
    —, On subelliptic estimates for complexes.Actes Congrès Intern. Math., 2 (1970), 227–230.Google Scholar
  7. [7].
    Hardymon, G. F., Ellipticity of the boundary complex implies coercivity of the Neumann problem. Thesis, Duke University, to appear.Google Scholar
  8. [8].
    Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems.Ann. of Math., 83, (1966), 129–209.MATHMathSciNetCrossRefGoogle Scholar
  9. [9].
    MacKichan, B., A generalization to overdetermined systems of the notion of diagonal operators, I: Elliptic operators.Acta Math., 126 (1971), 83–119.MATHMathSciNetCrossRefGoogle Scholar
  10. [10].
    Quillen, D. G., Formal properties of overdetermined systems of linear partial differential equations. Thesis, Harvard University, 1964 (unpublished).Google Scholar
  11. [11].
    Spanier, E. H.,Algebraic topology, Mc-Graw Hill, New York, 1966.Google Scholar
  12. [12].
    Spencer, D. C., Deformation of structures on manifolds defined by transitive, continuous, pseudogroups: I–II.Ann. of Math., 76 (1962), 306–445.MathSciNetCrossRefGoogle Scholar
  13. [13].
    Spencer, D. C., Flat differential operators, inSymposium on several complex variables, Park City, Utah, 1970. Lecture Notes in Math., 184, 85–108.Google Scholar
  14. [14].
    Sweeney, W. J., Coerciveness in the Neumann problem.J. Diff. Geom., 6 (1972), 375–393.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1975

Authors and Affiliations

  • Barry Mackichan
    • 1
  1. 1.Duke UniversityDurhamUSA

Personalised recommendations