Acta Mathematica

, Volume 134, Issue 1, pp 185–209 | Cite as

Poisson formula and compound diffusion associated to an overdetermined elliptic system on the siegel halfplane of rank two

  • A. Korányi
  • P. Malliavin


Symmetric Space Sample Path Dense Open Subset Hermitian Symmetric Space Order Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Feller, W.,An introduction to probability theory and its applications. John Wiley & Sons, Vol. I, 1950; Vol. II, 1966.Google Scholar
  2. [2].
    Furstenberg, H., A Poisson formula for semi-simple Lie groups.Ann. of Math., 77 (1963), 335–386.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    Gihman, I. I. & Skorohod, A. V.,Stochastic differential equations. Springer, 1972.Google Scholar
  4. [4].
    Hua, L. K.,Harmonic analysis of functions of several complex variables in the classical domains. Amer. Math. Soc. Translations of Mathematical Monographs, 1963.Google Scholar
  5. [5].
    Koranyi, A., The Poisson integral for generalized half-planes and bounded symmetric domains.Ann. of Math., 82 (1965), 332–350.MATHMathSciNetCrossRefGoogle Scholar
  6. [6].
    Koranyi, A., Harmonic functions on symmetric spaces. In Boothby and Weiss (editors),Symmetric spaces, Marcel Dekker, 1972.Google Scholar
  7. [7].
    Malliavin, P., Asymptotic of the Green's function of a Riemannian manifold and Ito's stochastic integrals.Proc. Nat. Acad. Sci. USA, 71 (1974), 381–383.MATHCrossRefGoogle Scholar
  8. [8].
    McKean, H.,Stochastic integrals, Academic Press, 1969.Google Scholar
  9. [9].
    Pyatetskii-Šapiro, I. I.,Geometry of classical domains and theory of automorphic functions. Moscow, 1961 (in Russian).Google Scholar
  10. [10].
    Debiard, A., Gaveau, B. &Mazet, E., Temps d'arrêt des diffusions riemanniennes.C. R. Acad. Sci. Paris Sér. A-B., 78 (1974), 723–725.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1975

Authors and Affiliations

  • A. Korányi
    • 1
  • P. Malliavin
    • 2
  1. 1.Yeshiva UniversityNew YorkUSA
  2. 2.Université de Paris VIFrance

Personalised recommendations