Acta Mathematica

, Volume 119, Issue 1, pp 273–303 | Cite as

Covariant representations ofC*-algebras and their locally compact automorphism groups

  • Masamichi Takesaki
Article

Keywords

Automorphism Group Covariant Representation Compact Automorphism Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Auslander, L. & Moore, C. C., Unitary representations of solvable Lie groups.Mem. Amer. Math. Soc., 62 (1966).Google Scholar
  2. [2].
    Bourbaki, N.,Topologie générale. Chap. IX, 2e ed., Paris 1958.Google Scholar
  3. [3].
    Dixmier, J.,Les algèbres d'operateurs dans l'espace hilbertien. Gauthier-Villars, Paris, 1957.Google Scholar
  4. [4].
    —,Les C *-algèbres et leurs représentations. Gauthier-Villars, Paris, 1965.Google Scholar
  5. [5].
    Doplicher, S., Kastler, D. &Robinson, D. W., Covariance algebras in field theory and statistical mechanics.Comm. Math. Phys., 3 (1966), 1–28.CrossRefMathSciNetGoogle Scholar
  6. [6].
    Fell, J. M. G., C*-algebras with smooth dual.Illinois J. Math., 4 (1960), 221–230.MATHMathSciNetGoogle Scholar
  7. [7].
    —, The dual space of C*-algebras.Trans. Amer. Math. Soc., 94 (1960), 365–403.CrossRefMATHMathSciNetGoogle Scholar
  8. [8].
    Glimm, J., Type I C*-algebras.Ann. Math., 73 (1961), 572–612.CrossRefMATHMathSciNetGoogle Scholar
  9. [9].
    —, Families of induced representations.Pacific J. Math., 12 (1962), 885–911.MATHMathSciNetGoogle Scholar
  10. [10].
    Guichardet, A., Produits tensoriels infinis et représentations des relations d'anticommutation.Ann. Sci. École Norm. Sup., 83 (1966), 1–52.MATHMathSciNetGoogle Scholar
  11. [11].
    Iwasawa, K., On some types of topological groups.Ann. Math., 50 (1949), 507–558.CrossRefMATHMathSciNetGoogle Scholar
  12. [12].
    Kirillov, A. A., Unitary representations of nilpotent Lie groups.Uspehi Mat. Nauk, 106 (1962), 57–110.MATHMathSciNetGoogle Scholar
  13. [13].
    Loomis, L. H., Note on a theorem of Mackey.Duke Math. J., 19 (1952), 641–645.CrossRefMATHMathSciNetGoogle Scholar
  14. [14].
    Mackey, G. W., A theorem of Stone and von Neumann.Duke Math. J., 16 (1949), 313–326.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    —, Induced representations of locally compact groups I.Ann. Math., 55 (1952), 101–139CrossRefMATHMathSciNetGoogle Scholar
  16. [16].
    —, Borel structures in groups and their duals.Trans. Amer. Math. Soc., 85 (1957), 134–165.CrossRefMATHMathSciNetGoogle Scholar
  17. [17].
    —, Unitary representations of locally compact group I.Acta Math., 99 (1958), 265–311.MATHMathSciNetGoogle Scholar
  18. [18].
    —, Point realizations of transformation groups.Illinois J. Math., 6 (1962), 327–335.MATHMathSciNetGoogle Scholar
  19. [19].
    —, Ergodic transformation groups with a pure point spectrum.Illinois J. Math., 8 (1964), 593–600.MATHMathSciNetGoogle Scholar
  20. [20].
    Rosenberg, A., The number of irreducible representations of simple rings with no minimal ideals.Amer. J. Math., 75 (1953), 523–530.MATHMathSciNetGoogle Scholar
  21. [21].
    Takesaki, M., A duality in the representation theory of C*-algebras.Ann. Math., 85 (1967), 370–382.CrossRefMATHMathSciNetGoogle Scholar
  22. [22].
    Turumaru, T., Crossed product of operator algebras.Tôhoku Math. J., 10 (1958), 355–365.MATHMathSciNetGoogle Scholar
  23. [23].
    Zeller-Meier, G., Produits croisés d'une C*-algèbre par un group d'automorphisms.C. R. Acad. Sci. Paris, 263 (1966), 20–23.MATHMathSciNetGoogle Scholar
  24. [24].
    Effros, E. G., Transformation groups and C*-algebras.Ann. Math., 81 (1965), 38–55.CrossRefMATHMathSciNetGoogle Scholar
  25. [25].
    Glimm, J., Locally compact transformation groups.Trans. Amer. Math. Soc., 101 (1961), 124–138.CrossRefMATHMathSciNetGoogle Scholar
  26. [26].
    Takesaki, M., On the unitary equivalence among the components of decompositions of representations of involutive Banach algebras and the associated diagonal algebras.Tôhoku Math. J., 15 (1963), 365–393.MATHMathSciNetGoogle Scholar
  27. [27].
    —, A complement to “On the unitary equivalence among the components of decompositions of representations of involutive Banach algebras and the associated diagonal algebras”.Tôhoku Math. J., 16 (1964), 226–227.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1967

Authors and Affiliations

  • Masamichi Takesaki
    • 1
  1. 1.Tôhoku UniversitySendaiJapan

Personalised recommendations