Advertisement

Acta Mathematica

, Volume 119, Issue 1, pp 273–303 | Cite as

Covariant representations ofC*-algebras and their locally compact automorphism groups

  • Masamichi Takesaki
Article

Keywords

Automorphism Group Covariant Representation Compact Automorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Auslander, L. & Moore, C. C., Unitary representations of solvable Lie groups.Mem. Amer. Math. Soc., 62 (1966).Google Scholar
  2. [2].
    Bourbaki, N.,Topologie générale. Chap. IX, 2e ed., Paris 1958.Google Scholar
  3. [3].
    Dixmier, J.,Les algèbres d'operateurs dans l'espace hilbertien. Gauthier-Villars, Paris, 1957.Google Scholar
  4. [4].
    —,Les C *-algèbres et leurs représentations. Gauthier-Villars, Paris, 1965.Google Scholar
  5. [5].
    Doplicher, S., Kastler, D. &Robinson, D. W., Covariance algebras in field theory and statistical mechanics.Comm. Math. Phys., 3 (1966), 1–28.CrossRefMathSciNetGoogle Scholar
  6. [6].
    Fell, J. M. G., C*-algebras with smooth dual.Illinois J. Math., 4 (1960), 221–230.MATHMathSciNetGoogle Scholar
  7. [7].
    —, The dual space of C*-algebras.Trans. Amer. Math. Soc., 94 (1960), 365–403.CrossRefMATHMathSciNetGoogle Scholar
  8. [8].
    Glimm, J., Type I C*-algebras.Ann. Math., 73 (1961), 572–612.CrossRefMATHMathSciNetGoogle Scholar
  9. [9].
    —, Families of induced representations.Pacific J. Math., 12 (1962), 885–911.MATHMathSciNetGoogle Scholar
  10. [10].
    Guichardet, A., Produits tensoriels infinis et représentations des relations d'anticommutation.Ann. Sci. École Norm. Sup., 83 (1966), 1–52.MATHMathSciNetGoogle Scholar
  11. [11].
    Iwasawa, K., On some types of topological groups.Ann. Math., 50 (1949), 507–558.CrossRefMATHMathSciNetGoogle Scholar
  12. [12].
    Kirillov, A. A., Unitary representations of nilpotent Lie groups.Uspehi Mat. Nauk, 106 (1962), 57–110.MATHMathSciNetGoogle Scholar
  13. [13].
    Loomis, L. H., Note on a theorem of Mackey.Duke Math. J., 19 (1952), 641–645.CrossRefMATHMathSciNetGoogle Scholar
  14. [14].
    Mackey, G. W., A theorem of Stone and von Neumann.Duke Math. J., 16 (1949), 313–326.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    —, Induced representations of locally compact groups I.Ann. Math., 55 (1952), 101–139CrossRefMATHMathSciNetGoogle Scholar
  16. [16].
    —, Borel structures in groups and their duals.Trans. Amer. Math. Soc., 85 (1957), 134–165.CrossRefMATHMathSciNetGoogle Scholar
  17. [17].
    —, Unitary representations of locally compact group I.Acta Math., 99 (1958), 265–311.MATHMathSciNetGoogle Scholar
  18. [18].
    —, Point realizations of transformation groups.Illinois J. Math., 6 (1962), 327–335.MATHMathSciNetGoogle Scholar
  19. [19].
    —, Ergodic transformation groups with a pure point spectrum.Illinois J. Math., 8 (1964), 593–600.MATHMathSciNetGoogle Scholar
  20. [20].
    Rosenberg, A., The number of irreducible representations of simple rings with no minimal ideals.Amer. J. Math., 75 (1953), 523–530.MATHMathSciNetGoogle Scholar
  21. [21].
    Takesaki, M., A duality in the representation theory of C*-algebras.Ann. Math., 85 (1967), 370–382.CrossRefMATHMathSciNetGoogle Scholar
  22. [22].
    Turumaru, T., Crossed product of operator algebras.Tôhoku Math. J., 10 (1958), 355–365.MATHMathSciNetGoogle Scholar
  23. [23].
    Zeller-Meier, G., Produits croisés d'une C*-algèbre par un group d'automorphisms.C. R. Acad. Sci. Paris, 263 (1966), 20–23.MATHMathSciNetGoogle Scholar
  24. [24].
    Effros, E. G., Transformation groups and C*-algebras.Ann. Math., 81 (1965), 38–55.CrossRefMATHMathSciNetGoogle Scholar
  25. [25].
    Glimm, J., Locally compact transformation groups.Trans. Amer. Math. Soc., 101 (1961), 124–138.CrossRefMATHMathSciNetGoogle Scholar
  26. [26].
    Takesaki, M., On the unitary equivalence among the components of decompositions of representations of involutive Banach algebras and the associated diagonal algebras.Tôhoku Math. J., 15 (1963), 365–393.MATHMathSciNetGoogle Scholar
  27. [27].
    —, A complement to “On the unitary equivalence among the components of decompositions of representations of involutive Banach algebras and the associated diagonal algebras”.Tôhoku Math. J., 16 (1964), 226–227.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1967

Authors and Affiliations

  • Masamichi Takesaki
    • 1
  1. 1.Tôhoku UniversitySendaiJapan

Personalised recommendations