Acta Mathematica

, Volume 136, Issue 1, pp 241–273 | Cite as

The limit set of a Fuchsian group

  • S. J. Patterson
Article

Keywords

Fuchsian Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akaza, T., Local property of the singular sets of some Kloinian groups.Tôhoku Math. J. 25 (1973), 1–22.MATHMathSciNetGoogle Scholar
  2. [2]
    Beardon, A.F., The Hausdorff dimension of singular sets of properly discontinuous groups.Amer. J. Math. 88 (1966), 722–736.MATHMathSciNetGoogle Scholar
  3. [3]
    —, The exponent of convergence of Poincaré series.Proc. London Math. Soc., (3) 18 (1968), 461–483.MATHMathSciNetGoogle Scholar
  4. [4]
    —, Inequalities for certain Fuchsian groups.Acta Math., 127 (1971), 221–258.MATHMathSciNetGoogle Scholar
  5. [5]
    Beardon, A. F. Kleinian groups with parabolic elements. Preprint.Google Scholar
  6. [6]
    Carleson, L.,Selected problems on exceptional sets. Van Nostrand Mathematical Studies, 14 (1967).Google Scholar
  7. [7]
    Elstrodt, J., Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil I.Math. Ann., 203 (1973), 295–330. Teil II.Math. Z., 132 (1973), 99–134. Teil III.Mat. Ann., 208 (1973), 99–132CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Greenberg, L., Fundamental polygons for Fuchsian groups.J. Analyse Math., 18 (1967) 99–105.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Lehner, J., Discontinuous groups and automorphic functions.Amer. Math. Soc., 1964.Google Scholar
  10. [10]
    Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.J. Ind. Math. Soc., 20 (1956), 47–87MATHMathSciNetGoogle Scholar
  11. [11].
    Tsuji, M. Potential theory in modern function theory. Maruzen, 1959.Google Scholar
  12. [12].
    Whittaker, E. T. & Watson, G. N.,Modern Analysis. Cambridge, 1946.Google Scholar

Copyright information

© Almqvist & Wiksell 1976

Authors and Affiliations

  • S. J. Patterson
    • 1
  1. 1.University of CambridgeEngland

Personalised recommendations