Advertisement

Acta Mathematica

, Volume 126, Issue 1, pp 227–243 | Cite as

Cohomology of operator algebras

I. Type I von Neumann algebras
  • Richard V. Kadison
  • John R. Ringrose
Article

Keywords

Operator Algebra Banach Algebra Cohomology Group Finite Subset Partial Isometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Day, M. M., Amenable semi-groups.Illinois J. Math., 1 (1957), 509–544.MATHMathSciNetGoogle Scholar
  2. [2].
    —, Ergodic theorems for Abelian semi-groups.Trans. Amer. Math. Soc., 51 (1942), 399–412.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    Dixmier, J.,Les algèbres d'opérateurs dans l'espace Hilbertien (algèbres de von Neumann), 2nd edition. Gauthier-Villars, Paris, 1969.Google Scholar
  4. [4].
    Dunford, N. &Schwartz, J. T.,Linear operators, Part 1. Interscience, New York, 1958.Google Scholar
  5. [5].
    Hochschild, G., On the cohomology groups of an associative algebra.Ann. of Math., 46 (1945), 58–67.MATHMathSciNetCrossRefGoogle Scholar
  6. [6].
    —, On the cohomology theory for associative algebras.Ann. of Math., 47 (1946), 568–579.MATHMathSciNetCrossRefGoogle Scholar
  7. [7].
    —, Cohomology and representations of associative algebras.Duke Math. J., 14 (1947), 921–948.MATHMathSciNetCrossRefGoogle Scholar
  8. [8].
    Johnson, B. E., Cohomology in Banach algebras. To be published.Google Scholar
  9. [9].
    Johnson, B. E. &Ringrose, J. R., Derivations of operator algebras and discrete group algebras.Bull. London Math. Soc., 1 (1969), 70–74.MATHMathSciNetGoogle Scholar
  10. [10].
    Kadison, R. V., Derivations of operator algebras.Ann. of Math., 83 (1966), 280–293.MATHMathSciNetCrossRefGoogle Scholar
  11. [11].
    Kamowitz, H., Cohomology groups of commutative Banach algebras.Trans. Amer. Math. Soc., 102 (1962), 352–372.MATHMathSciNetCrossRefGoogle Scholar
  12. [12].
    von Neumann, J., Zur allgemeinen Theorie des Masses.Fund. Math., 13 (1929), 73–116.MATHGoogle Scholar
  13. [13].
    Sakai, S., Derivations ofW *-algebras.Ann. of Math., 83 (1966), 273–279.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1971

Authors and Affiliations

  • Richard V. Kadison
    • 1
    • 2
  • John R. Ringrose
    • 1
    • 2
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.University of Newcastle upon TyneEngland

Personalised recommendations