Acta Mathematica

, Volume 122, Issue 1, pp 115–160 | Cite as

Recursively enumerable degrees and the conjugacy problem

  • Donald J. Collins
Article

Keywords

Inductive Hypothesis Word Problem Cyclic Permutation CONJUGACY Problem Positive Word 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adjan, S. I., On algorithmic problems in effectively complete classes of groups (Russian).Dokl. Akad. Nauk SSSR, 123 (1958), 13–16.MATHMathSciNetGoogle Scholar
  2. [2]
    Bokut', L. A., On a property of groups of Boone (Russian).Algebra i Logika Sem., 5 (1966), No. 5, 5–23; 6 (1967), No. 1, 15–24.MATHMathSciNetGoogle Scholar
  3. [3]
    —, On groups of Novikov (Russian).Algebra i Logika Sem., 6 (1967), No. 1, 25–38.MATHMathSciNetGoogle Scholar
  4. [4]
    Boone, W. W., Certain simple unsolvable problems of group theory.Indag. Math., 16 (1954), 231–237, 492–497; 17 (1955), 252–256, 571–577; 19 (1957), 22–27, 227–232.MathSciNetGoogle Scholar
  5. [5]
    —, The word problem.Ann. of Math., 70 (1959), 207–265.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    —, Word problems and recursively enumerable degrees of unsolvability. A first paper on Thue systems.Ann. of Math., 83 (1966), 520–571.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    —, Word problems and recursively enumerable degrees of unsolvability. A sequel on finitely presented groups.Ann. of Math., 84 (1966), 49–84.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Boone, W. W., Decision problems about algebraic and logical systems as a whole and recursively enumerable degrees of unsolvability. To appear inProc. Kolloqium ü. Logik u. Grundlagen d. Math., Hannover, 1966.Google Scholar
  9. [9]
    Britton, J. L., The word problem.Ann. of Math., 77 (1963), 16–32.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Clapham, C. R. J., Fimitely presented groups with word problems of arbitrary degrees of insolvability.Proc. London Math. Soc., Series 3, 14 (1964), 633–676.MATHMathSciNetGoogle Scholar
  11. [11]
    Fridman, A. A., On the relation between the word problem and the conjugacy problem in finitely defined groups (Russian).Trudy Moskov. Mat. Obšč., 9 (1960), 329–365.MATHMathSciNetGoogle Scholar
  12. [12]
    —, Degrees of unsolvability of the problem of identity in finitely presented groups.Soviet Math., 3 (1962), Part 2, 1733–1737.Google Scholar
  13. [13]
    Friedberg, R. M., Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post's problem, 1944).Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 236–238.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Lyndon, R. C. &Schutzenberger, M. P., On the equationa M=b N c P in a free group,Michigan Math. J., 9 (1962), 289–298.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Miller III, C. F., Conjugacy and word problems in finitely generated groups,J. Symb. Logic, 32 (1967), 440–441.Google Scholar
  16. [16]
    —, Characterisation of recursively enumerable degrees by conjugacy and word problems for finitely generated groups,J. Symb. Logic, 32 (1967), 441.Google Scholar
  17. [17]
    Mucnik, A. A., Negative answer to the problem of reducibility of the theory of algorithms (Russian).Dokl. Akad. Nauk SSSR, 108 (1956), 194–197.MathSciNetGoogle Scholar
  18. [18]
    Novikov, P. S., Unsolvability of the conjugacy problem in the theory of groups (Russian).Izv. Akad. Nauk SSSR, Ser. Mat., 18 (1954), 485–524.MATHMathSciNetGoogle Scholar
  19. [19]
    Novikov, P. S., On the algorithmic unsolvability of the word problem in group theory (Russian).Trudy Mat. Inst. Steklov, no. 44.Google Scholar
  20. [20]
    Rabin, M. O., Recursive unsolvability of group-theoretic problems.Ann. of Math., 67 (1958), 172–194.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Shepherdson, J. C., Machine configurations and word problems of given degree of unsolvability.Z. Math. Logik Grundlagen Math., 11 (1965), 149–175.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1969

Authors and Affiliations

  • Donald J. Collins
    • 1
  1. 1.Queen Mary CollegeLondonEngland

Personalised recommendations