Advertisement

Acta Mathematica

, Volume 121, Issue 1, pp 293–302 | Cite as

Grassmann angles of convex polytopes

  • Branko Grünbaum
Article

Keywords

Convex Polytopes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Bourbaki, N.,Intégration, Ch. 7 (Mesure de Haar). Actualités Sci. et Ind., No. 1306. Hermann, Paris 1963.Google Scholar
  2. [2].
    Fáry, I., Sur la courbure totale d'une courbe gauche faisant un nœud.Bull. Soc. Math. France, 77 (1949), 128–138.MATHMathSciNetGoogle Scholar
  3. [3].
    Frostman, O., En sats av Fáry med elementära tillämpningar.Nordisk Mat. Tidskr., 1 (1953), 25–32.MATHMathSciNetGoogle Scholar
  4. [4].
    Grünbaum, B.,Convex polytopes. Wiley, New York 1967.Google Scholar
  5. [5].
    Hadwiger, H.,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin 1957.Google Scholar
  6. [6].
    Perles, M. A. & Shephard, G. C., Angle sums of convex polytopes. To appear inMath. Scand.Google Scholar
  7. [7].
    —, Facets and nonfacets of convex polytopes.Acta Math., 119 (1967), 113–145.CrossRefMathSciNetGoogle Scholar
  8. [8].
    Petkantschin, B., Zusammenhänge zwischen den Dichten der linearen Unterräume imn-dimensionalen Raum.Abh. Math. Sem. Hamburg, 11 (1936), 249–310.MATHGoogle Scholar
  9. [9].
    Shephard, G. C., Angle deficiencies of convex polytopes.J. London Math. Soc., 43 (1968), 325–336.MATHMathSciNetGoogle Scholar
  10. [10].
    Sommerville, D. M. Y., The relations connecting the anglesums and volume of a polytope in space ofn dimensions.Proc. Roy. Soc. London, Ser. A, 115 (1927), 103–119.MATHGoogle Scholar
  11. [11].
    —,An introduction to the geometry of n dimensions. Methuen, London 1929.Google Scholar

Added in proof (October 13, 1968): The following recent paper deal with topics related to Grassmann angles

  1. [12].
    Banchoff, T., Critical points and curvature for embedded polyhedra.J. Diff. Geometry, 1 1 (1967), 245–256.MATHMathSciNetGoogle Scholar
  2. [13].
    Hadwiger, H., Eckenkrümmung beliebiger kompakter euklidischer Polyeder und Charakteristik von Euler-Poincaré. To appear.Google Scholar
  3. [14].
    Mani, P., On angle sums and Steiner points of polyhedra. To appear inIsrael J. Math. Google Scholar
  4. [15].
    Shephard, G. C., An elementary proof of Gram's theorem for convex polytopes.Canad J. J. Math., 19 (1967), 1214–1217.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1968

Authors and Affiliations

  • Branko Grünbaum
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations