Advertisement

Acta Mathematica

, Volume 121, Issue 1, pp 219–249 | Cite as

Commutators and systems of singular integral equations. I

  • Joel David Pincus
Article

Keywords

Integral Equation Singular Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Pincus, J. D., On the spectral theory of singular integral operators.Trans. Amer. Math. Soc., 113 (1964), 101–128.CrossRefMATHMathSciNetGoogle Scholar
  2. [2].
    —, Commutators, generalized eigenfunction expansions and singular integral operators.Trans. Amer. Math. Soc. 121 (1966), 358–377.CrossRefMATHMathSciNetGoogle Scholar
  3. [3].
    Pincus, J. D. A singular Riemann-Hilbert Problem.Proceedings of 1965 Summer Institute on Spectral Theory and Statistical Mechanics. Brookhaven National Laboratory, Upton, New York.Google Scholar
  4. [4].
    Rosenblum, M., A spectral theory for self-adjoint singular integral operators.Amer. J. Math., 88 (1966), 314–328.MATHMathSciNetGoogle Scholar
  5. [5].
    Pincus, J. D., Spectral theory of Wiener-Hopf operators.Bull. Amer. Math. Soc., 72 (1966), 882–887.MathSciNetCrossRefGoogle Scholar
  6. [6].
    —, Singular integral operators on the unit circle.Bull. Amer. Math. Soc., 73 (1967), 195–199.MATHMathSciNetGoogle Scholar
  7. [7].
    Putnam, C. R., On Toeplitz matrices, absolute continuity and unitary equivalence.Pacific J. Math., 9 (1959), 837–846.MATHMathSciNetGoogle Scholar
  8. [8].
    Gohberg, I. C. & Krein, M. G., Systems of integral equations.Amer. Math. Soc. Transl., Ser. 2, 14, 217–287.Google Scholar
  9. [9].
    Kuroda, S. T., An abstract stationary approach to perturbation of continuous spectra and scattering theory.J. Analyse Math., 20 (1967), 57–117.MATHMathSciNetGoogle Scholar
  10. [10].
    De Branges, L., Perturbations of self-adjoint transformations.Amer. J. Math., 84 (1962), 543–560.MATHMathSciNetGoogle Scholar
  11. [11].
    Verblunsky, S., Two moment problems for bounded functions,Proc. Cambridge Philos. Soc., 42 (1946), 189–196.MATHMathSciNetCrossRefGoogle Scholar
  12. [12].
    Aronszajn, N. &Donoghue, W. F., Jr., On exponential representations of analytic functions in the upper half plane with positive imaginary part.J. Analyse Math., 5 (1956–57), 321–388.CrossRefGoogle Scholar
  13. [13].
    Pincus, J. D., Wiener-Hopf problems. To appear.Google Scholar
  14. [14].
    Rosenberg, M., The square integrability of matrix-valued functions with respect to a non-negative Hermitian measure.Duke Math. J., 31 (1964), 291–298.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    Muschelischwili, N. I.,Singuläre Integralgleichungen. Akademie-Verlag, Berlin 1965.MATHGoogle Scholar
  16. [16], [17].
    See reference [5] and [6] under Mandshewidse listed by Muschelischwili for these Russian language references.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1968

Authors and Affiliations

  • Joel David Pincus
    • 1
    • 2
  1. 1.Brookhaven National LaboratoryUpton
  2. 2.Courant Institute of matematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations