Acta Mathematica

, Volume 165, Issue 1, pp 189–227 | Cite as

AlgebraicL 2 decay for Navier-Stokes flows in exterior domains

  • Wolfgang Borchers
  • Tetsuro Miyakawa
Article

Keywords

Exterior Domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agmon, S., Douglis, A. &Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math., 17 (1964), 35–92.MathSciNetMATHGoogle Scholar
  2. [2]
    Bogovski, M. E., Solutions of the first boundary value problem for the equations of continuity of an incompressible medium.Soviet Math. Dokl., 20 (1979), 1094–1098.Google Scholar
  3. [3]
    Borchers, W. &Miyakawa, T.,L 2 decay for the Navier-Stokes flow in half-spaces.Math. Ann., 282 (1988), 139–155.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Borchers, W. &Sohr, H., On the semigroup of the Stokes operator for exterior domains inL q spaces.Math. Z., 196 (1987), 415–425.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    —, The equations divu=f and rotv=g with homogeneous Dirichlet boundary condition.Hokkaido Math. J., 19 (1990), 67–87.MathSciNetMATHGoogle Scholar
  6. [6]
    Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes.Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340.MATHMathSciNetGoogle Scholar
  7. [7]
    Chang, I-Dee &Finn, R., On the solutions of a class of equations occurring in continuum mechanics with application to the Stokes paradox.Arch. Rational Mech. Anal., 7 (1961), 388–401.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Friedman, A.,Partial Differential Equations. Holt, Rinehard & Winston, New York, 1969.MATHGoogle Scholar
  9. [9]
    Fujiwara, D. &Morimoto, H., AnL r-theorem of the Helmholtz decomposition of vector fields.J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685–700.MathSciNetMATHGoogle Scholar
  10. [10]
    Galdi, G. &Maremonti, P., Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains.Arch. Rational Mech. Anal., 94 (1986), 253–266.CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    Giga, Y., Analyticity of the semigroup generated by the Stokes operator inL r spaces.Math. Z., 178 (1981), 297–329.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    —, Domains of fractional powers of the Stokes operator inL r spaces.Arch. Rational Mech. Anal., 89 (1985), 251–265.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Giga, Y. &Sohr, H., On the Stokes operator in exterior domains.J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 36 (1989), 103–130.MathSciNetGoogle Scholar
  14. [14]
    Heywood, J. G., On uniqueness questions in the theory of viscous flow.Acta Math., 138 (1976), 61–102.MathSciNetGoogle Scholar
  15. [15]
    —, The Navier-Stokes equations: On the existence, regularity and decay of solutions.Indiana Univ. Math. J., 29 (1980), 639–681.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr., 4 (1951), 213–231.MATHMathSciNetGoogle Scholar
  17. [17]
    Iwashita, H.,L q−Lr estimates for solutions of nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem inL q spaces.Math. Ann., 285 (1989), 265–288.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    Kajikiya, R. &Miyakawa, T., OnL 2 decay of weak solutions of the Navier—Stokes equations inR n.Math. Z., 192 (1986), 135–148.CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    Kato, T.,Perturbation Theory for Linear Operators. 2nd ed., Springer-Verlag, Berlin, 1976.MATHGoogle Scholar
  20. [20]
    —, StrongL p-solutions of the Navier—Stokes equation inR m with applications to weak solutions.Math. Z., 187 (1984), 471–480.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Komatsu, H., Fractional powers of operators.Pacific J. Math., 19 (1966), 285–346.MATHMathSciNetGoogle Scholar
  22. [22]
    Krein, S.,Linear Differential Equations in Banach Spaces. Amer. Math. Soc., Providence, 1972.Google Scholar
  23. [23]
    Ladyzhenskaya, O. A.,The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York, 1969.MATHGoogle Scholar
  24. [24]
    Leray, J., Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math., 63 (1934), 193–248.MATHMathSciNetGoogle Scholar
  25. [25]
    Maremonti, P., On the asymptotic behavior of theL 2 norm of suitable weak solutions to the Navier—Stokes equations in three-dimensional exterior domains.Comm. Math. Phys., 118 (1988), 385–400.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    Martinez, C., Sanz, M. &Marco, L., Fractional powers of operators.J. Math. Soc. Japan, 40 (1988), 331–347.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Masuda, K., Weak solutions of the Navier—Stokes equations.Tôhoku Math. J., 36 (1984), 623–646.MATHMathSciNetGoogle Scholar
  28. [28]
    Miyakawa, T., On nonstationary solutions of the Navier—Stokes equations in an exterior domain.Hiroshima Math. J., 12 (1982), 115–140.MATHMathSciNetGoogle Scholar
  29. [29]
    Miyakawa, T. &Sohr, H., On energy inequality, smoothness and large time behavior inL 2 for weak solutions of the Navier—Stokes equazions in exterior domains.Math. Z., 199 (1988) 455–478.CrossRefMathSciNetMATHGoogle Scholar
  30. [30]
    Prodi, G., Un teorema di unicità per le equazioni di Navier—Stokes.Annali di Mat., 48 (1959), 173–182.MATHMathSciNetGoogle Scholar
  31. [31]
    Reed, M. &Simon, B.,Methods of Modern Mathematical Physics, vol. II; Fourier analysis, self-adjointness. Academic Press, New York, 1975.Google Scholar
  32. [32]
    De Rham, G.,Differentiable Manifolds. Springer-Verlag, Berlin, 1984.MATHGoogle Scholar
  33. [33]
    Schonbek, M.E.,L 2 decay for weak solutions of the Navier—Stokes equations.Arch. Rational Mech. Anal., 88 (1986), 209–222.CrossRefMathSciNetGoogle Scholar
  34. [34]
    —, Large time behaviour of solutions of the Navier—Stokes equations.Comm. Partial Differential Equations, 11 (1986), 733–763.MATHMathSciNetGoogle Scholar
  35. [35]
    Serrin, J., The initial value problem for the Navier—Stokes equations, inNonlinear Problems, R. Langer ed. The University of Wisconsin Press, Madison, 1963, pp. 69–98.Google Scholar
  36. [36]
    Simader, C. G.,On Dirichlet's Boundary Value Problem. Lecture Notes in Math., no. 268, Springer-Verlag, Berlin, 1972.MATHGoogle Scholar
  37. [37]
    Solonnikov, V. A., Estimates for solutions of nonstationary Navier—Stokes equations.J. Soviet Math., 8 (1977), 467–529.CrossRefMATHGoogle Scholar
  38. [38]
    Sohr, H., von Wahl, W. &Wiegner, M., Zur Asymptotik der Gleichungen von Navier—Stokes.Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 3 (1986), 45–59.Google Scholar
  39. [39]
    Specovius, M., Die Stokes Gleichungen in Cantor Räumen und die Analytizität der Stokes-Halbgruppe in gewichtetenL p-Räumen. Dissertation, Paderborn, 1984.Google Scholar
  40. [40]
    Stein, E.,Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  41. [41]
    Triebel, H.,Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publ. Co., Amsterdam, 1978.Google Scholar
  42. [42]
    Westphal, U., Ein Kalkül für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren; Teil I: Halbgruppenerzeuger.Compositio Math., 22 (1970), 67–103.MATHMathSciNetGoogle Scholar
  43. [43]
    Wiegner, M., Decay results for weak solutions of the Navier—Stokes equations inR n.J. London Math. Soc., 35 (1987), 303–313.MATHMathSciNetGoogle Scholar
  44. [44]
    Yosida, K.,Functional Analysis. Springer-Verlag, Berlin, 1965.MATHGoogle Scholar
  45. [45]
    Kozono, H. & Sohr, H.,L q-regularity theory for the Stokes operator in exterior domains. Preprint.Google Scholar

Copyright information

© Almqvist & Wiksell 1990

Authors and Affiliations

  • Wolfgang Borchers
    • 1
  • Tetsuro Miyakawa
    • 2
  1. 1.Universität PaderbornPaderbornWest Germany
  2. 2.Hiroshima UniversityHiroshimaJapan

Personalised recommendations