Acta Mathematica

, Volume 165, Issue 1, pp 189–227 | Cite as

AlgebraicL 2 decay for Navier-Stokes flows in exterior domains

  • Wolfgang Borchers
  • Tetsuro Miyakawa


Exterior Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agmon, S., Douglis, A. &Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math., 17 (1964), 35–92.MathSciNetMATHGoogle Scholar
  2. [2]
    Bogovski, M. E., Solutions of the first boundary value problem for the equations of continuity of an incompressible medium.Soviet Math. Dokl., 20 (1979), 1094–1098.Google Scholar
  3. [3]
    Borchers, W. &Miyakawa, T.,L 2 decay for the Navier-Stokes flow in half-spaces.Math. Ann., 282 (1988), 139–155.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Borchers, W. &Sohr, H., On the semigroup of the Stokes operator for exterior domains inL q spaces.Math. Z., 196 (1987), 415–425.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    —, The equations divu=f and rotv=g with homogeneous Dirichlet boundary condition.Hokkaido Math. J., 19 (1990), 67–87.MathSciNetMATHGoogle Scholar
  6. [6]
    Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes.Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340.MATHMathSciNetGoogle Scholar
  7. [7]
    Chang, I-Dee &Finn, R., On the solutions of a class of equations occurring in continuum mechanics with application to the Stokes paradox.Arch. Rational Mech. Anal., 7 (1961), 388–401.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Friedman, A.,Partial Differential Equations. Holt, Rinehard & Winston, New York, 1969.MATHGoogle Scholar
  9. [9]
    Fujiwara, D. &Morimoto, H., AnL r-theorem of the Helmholtz decomposition of vector fields.J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685–700.MathSciNetMATHGoogle Scholar
  10. [10]
    Galdi, G. &Maremonti, P., Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains.Arch. Rational Mech. Anal., 94 (1986), 253–266.CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    Giga, Y., Analyticity of the semigroup generated by the Stokes operator inL r spaces.Math. Z., 178 (1981), 297–329.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    —, Domains of fractional powers of the Stokes operator inL r spaces.Arch. Rational Mech. Anal., 89 (1985), 251–265.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Giga, Y. &Sohr, H., On the Stokes operator in exterior domains.J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 36 (1989), 103–130.MathSciNetGoogle Scholar
  14. [14]
    Heywood, J. G., On uniqueness questions in the theory of viscous flow.Acta Math., 138 (1976), 61–102.MathSciNetGoogle Scholar
  15. [15]
    —, The Navier-Stokes equations: On the existence, regularity and decay of solutions.Indiana Univ. Math. J., 29 (1980), 639–681.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr., 4 (1951), 213–231.MATHMathSciNetGoogle Scholar
  17. [17]
    Iwashita, H.,L q−Lr estimates for solutions of nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem inL q spaces.Math. Ann., 285 (1989), 265–288.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    Kajikiya, R. &Miyakawa, T., OnL 2 decay of weak solutions of the Navier—Stokes equations inR n.Math. Z., 192 (1986), 135–148.CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    Kato, T.,Perturbation Theory for Linear Operators. 2nd ed., Springer-Verlag, Berlin, 1976.MATHGoogle Scholar
  20. [20]
    —, StrongL p-solutions of the Navier—Stokes equation inR m with applications to weak solutions.Math. Z., 187 (1984), 471–480.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Komatsu, H., Fractional powers of operators.Pacific J. Math., 19 (1966), 285–346.MATHMathSciNetGoogle Scholar
  22. [22]
    Krein, S.,Linear Differential Equations in Banach Spaces. Amer. Math. Soc., Providence, 1972.Google Scholar
  23. [23]
    Ladyzhenskaya, O. A.,The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York, 1969.MATHGoogle Scholar
  24. [24]
    Leray, J., Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math., 63 (1934), 193–248.MATHMathSciNetGoogle Scholar
  25. [25]
    Maremonti, P., On the asymptotic behavior of theL 2 norm of suitable weak solutions to the Navier—Stokes equations in three-dimensional exterior domains.Comm. Math. Phys., 118 (1988), 385–400.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    Martinez, C., Sanz, M. &Marco, L., Fractional powers of operators.J. Math. Soc. Japan, 40 (1988), 331–347.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Masuda, K., Weak solutions of the Navier—Stokes equations.Tôhoku Math. J., 36 (1984), 623–646.MATHMathSciNetGoogle Scholar
  28. [28]
    Miyakawa, T., On nonstationary solutions of the Navier—Stokes equations in an exterior domain.Hiroshima Math. J., 12 (1982), 115–140.MATHMathSciNetGoogle Scholar
  29. [29]
    Miyakawa, T. &Sohr, H., On energy inequality, smoothness and large time behavior inL 2 for weak solutions of the Navier—Stokes equazions in exterior domains.Math. Z., 199 (1988) 455–478.CrossRefMathSciNetMATHGoogle Scholar
  30. [30]
    Prodi, G., Un teorema di unicità per le equazioni di Navier—Stokes.Annali di Mat., 48 (1959), 173–182.MATHMathSciNetGoogle Scholar
  31. [31]
    Reed, M. &Simon, B.,Methods of Modern Mathematical Physics, vol. II; Fourier analysis, self-adjointness. Academic Press, New York, 1975.Google Scholar
  32. [32]
    De Rham, G.,Differentiable Manifolds. Springer-Verlag, Berlin, 1984.MATHGoogle Scholar
  33. [33]
    Schonbek, M.E.,L 2 decay for weak solutions of the Navier—Stokes equations.Arch. Rational Mech. Anal., 88 (1986), 209–222.CrossRefMathSciNetGoogle Scholar
  34. [34]
    —, Large time behaviour of solutions of the Navier—Stokes equations.Comm. Partial Differential Equations, 11 (1986), 733–763.MATHMathSciNetGoogle Scholar
  35. [35]
    Serrin, J., The initial value problem for the Navier—Stokes equations, inNonlinear Problems, R. Langer ed. The University of Wisconsin Press, Madison, 1963, pp. 69–98.Google Scholar
  36. [36]
    Simader, C. G.,On Dirichlet's Boundary Value Problem. Lecture Notes in Math., no. 268, Springer-Verlag, Berlin, 1972.MATHGoogle Scholar
  37. [37]
    Solonnikov, V. A., Estimates for solutions of nonstationary Navier—Stokes equations.J. Soviet Math., 8 (1977), 467–529.CrossRefMATHGoogle Scholar
  38. [38]
    Sohr, H., von Wahl, W. &Wiegner, M., Zur Asymptotik der Gleichungen von Navier—Stokes.Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 3 (1986), 45–59.Google Scholar
  39. [39]
    Specovius, M., Die Stokes Gleichungen in Cantor Räumen und die Analytizität der Stokes-Halbgruppe in gewichtetenL p-Räumen. Dissertation, Paderborn, 1984.Google Scholar
  40. [40]
    Stein, E.,Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  41. [41]
    Triebel, H.,Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publ. Co., Amsterdam, 1978.Google Scholar
  42. [42]
    Westphal, U., Ein Kalkül für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren; Teil I: Halbgruppenerzeuger.Compositio Math., 22 (1970), 67–103.MATHMathSciNetGoogle Scholar
  43. [43]
    Wiegner, M., Decay results for weak solutions of the Navier—Stokes equations inR n.J. London Math. Soc., 35 (1987), 303–313.MATHMathSciNetGoogle Scholar
  44. [44]
    Yosida, K.,Functional Analysis. Springer-Verlag, Berlin, 1965.MATHGoogle Scholar
  45. [45]
    Kozono, H. & Sohr, H.,L q-regularity theory for the Stokes operator in exterior domains. Preprint.Google Scholar

Copyright information

© Almqvist & Wiksell 1990

Authors and Affiliations

  • Wolfgang Borchers
    • 1
  • Tetsuro Miyakawa
    • 2
  1. 1.Universität PaderbornPaderbornWest Germany
  2. 2.Hiroshima UniversityHiroshimaJapan

Personalised recommendations