Acta Mathematica

, Volume 110, Issue 1, pp 97–114 | Cite as

On the number of divisors of quadratic polynomials

  • Christopher Hooley


Quadratic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Bellman, R., Ramanujan sums and the average value of arithmetical functions.Duke Math. J., 17 (1950), 159–168.MATHMathSciNetCrossRefGoogle Scholar
  2. [2].
    Erdös, P., On the sum Σd{f(k)}.J. London Math. Soc., 27 (1952), 7–15.MATHMathSciNetGoogle Scholar
  3. [3].
    Gauss, K. F.,Disquisitiones arithmeticae, 1801.Google Scholar
  4. [4].
    Hardy, G. H.,Divergent series. Oxford Univ. Press, 1948.Google Scholar
  5. [5].
    Hooley, C., On the representation of a number as the sum of a square and a product.Math. Z. 69 (1958), 211–227.MATHMathSciNetCrossRefGoogle Scholar
  6. [6].
    —, An asymptotic formula in the theory of numbers.Proc. London Math. Soc., Ser. 3, 7 (1957), 396–413.MATHMathSciNetGoogle Scholar
  7. [7].
    Ingham, A. E., Some asymptotic formulae in the theory of numbersJ. London Math. Soc., 2 (1927), 202–208.MATHGoogle Scholar
  8. [8].
    Scourfield, E. J., The divisors of a quadratic polynomial.Proc. Glasgow Math. Soc., 5 (1961), 8–20.MATHMathSciNetCrossRefGoogle Scholar
  9. [9].
    Smith, H. J. S.,Collected Mathematical Papers, Vol. 1, 1894.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1963

Authors and Affiliations

  • Christopher Hooley
    • 1
  1. 1.Bristol UniversityEngland

Personalised recommendations