Skip to main content
Log in

Marine macroalgae as foods for fishes: an evaluation of potential food quality

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

A revitalized view of feeding by herbivorous marine fishes is sought through two questions. First, What characteristics of major taxa of algae identify them as predictably high or low quality foods? Second, are marine algae valuable foods for fishes which do not mechanically disrupt cell walls and do not harbor specialized enzymes or microbes capable of lysing cell walls? Energy, ash and nutrient content of 16 species of marine algae were employed to assess food quality of fleshy red, green, brown and calcareous red algae. On the basis of ash, calories, total protein and total lipid content, fleshy algae should be superior to calcareous algae as foods for fishes; in addition, green algae should be superior to brown algae and brown algae superior to red algae. When the probable digestibility of storage and extracellular carbohydrates is considered, green and red algae are predicted superior to brown algae as food. Two species of damselfishes (Pomacentridae) from the Gulf of California,Eupomacentrus rectifraenum andMicrospathodon dorsalis, eat red and green algae and ignore brown and calcareous algae. They feed, therefore, in a fashion consistent with predictions based only on algal chemistry. These fishes absorb at least 20–24% of the biomass, 57–67% of the protein, 46–56% of the lipid and 37–44% of the carbohydrate contained in algae eaten in the wild. Since these damselfishes do not masticate their food, it appears that herbivorous fishes can digest major fractions of algal nutrients without mechanical destruction of algal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Al-Hussaini, A. H. 1947. The feeding habits and the morphology of the alimentary tract of some teleosts living in the neighborhood of the marine biological station. Publ. Mar. Biol. Stn. Ghardaqa (Red Sea) 5: 1–61.

    Google Scholar 

  • Bakus, G. J. 1969. Energetics and feeding in shallow marine waters. Int. Rev. Gen. Exptl. Zool. 4: 275–369.

    Google Scholar 

  • Barrington, E. J. W. 1957. The alimentary canal and digestion. pp. 109–161. In: M. E. Brown (ed.) The Physiology of Fishes, vol. 1, Academic Press, New York.

  • Black, W. A. P. & W. J. Cornhill. 1951. A method for the estimation of fucosterol in seaweeds. J. Sci. Fd. Agric. 2: 387–390.

    CAS  Google Scholar 

  • Bryan, P. G. 1975. Food habits, functional digestive morphology, and assimilation efficiency of the rabbitfishSiganus spinus (Pisces, Siganidae) on Guam. Pac. Sci. 29: 269–277.

    Google Scholar 

  • Buddington, R. K. 1978. Digestion of an aquatic macrophyte byTilapia zillii (Cichlidae). M.S. Thesis, Arizona State University. 45 pp.

  • Cowey, C. B. 1975. Aspects of protein utilization by fish. Proc. Nutr. Sec. 34: 57–63.

    CAS  Google Scholar 

  • Craigie, J. S. 1974. Storage products. pp. 206–235. In: W. D. P. Stewart (ed.) Algal physiology and biochemistry, University of California Press, Berkeley.

    Google Scholar 

  • Dawes, C. J., J. M. Lawrence, D. P. Cheney & A. C. Mathieson. 1974. Ecological studies of FlorideanEucheuma (Rhodophyta, Gigartinales). III. Seasonal variation of carrageenan, total carbohydrate, protein, and lipid. Bull. Mar. Sci. 24: 286–299.

    CAS  Google Scholar 

  • Dawson, E. Y. 1966. Marine botany. Holt, Rinehart and Winston, Inc., New York. 371 pp.

    Google Scholar 

  • Fange, R. & D. Grove. 1979. Digestion. pp. 162–260. In: W. S. Hoar, D. J. Randall & J. R. Brett (ed.) Fish physiology, vol. 8, Academic Press, New York.

  • Fischer, Z. 1970. The elements of energy balance in grass carp (Ctenopharyngodon idella Val.). Part I. Pol. Arch. Hydrobiol. 17: 421–434.

    CAS  Google Scholar 

  • Folch, J., M. Lees & G. Y. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497–509.

    CAS  Google Scholar 

  • Gerking, S. D. 1952. The protein metabolism of sunfishes of different ages. Physiol. Zool. 25: 358–372.

    Google Scholar 

  • Gerking, S. D. 1955. Influence of rate of feeding on body composition and protein metabolism of bluegill sunfish. Physiol. Zool. 28: 267–282.

    CAS  Google Scholar 

  • Hayashi, K., S. Kida, K. Kato & M. Yamada. 1974. Component fatty acids of acetone-soluble lipids of 17 species of marine benthic algae. Bull. Jap. Sec. Sci. Fish 40: 609–617.

    CAS  Google Scholar 

  • Idler, D. R. & P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variations in the demosterol content of dulse (Rhodymenia plamata). Comp. Biochem. Physiol. 35: 679–687.

    CAS  Google Scholar 

  • Ishida, J. 1936. Distribution of the digestive enzymes in the digestive system of the stomachless fishes. Annot. Zool. Japon. 15: 263–284.

    Google Scholar 

  • Jensen, A. 1972. The nutritive value of seaweed meal for domestic animals. pp. 7–14. In: Proc. 7th Intern. Seaweed Symp., Tokyo University Press, Tokyo.

    Google Scholar 

  • Kapoor, B. G., H. Smit & I. A. Verighina. 1975. The alimentary canal and digestion in teleosts. Adv. Mar. Biol. 13: 109–239.

    CAS  Google Scholar 

  • Kenyon, W. A. 1925. Digestive enzymes in poikilothermal vertebrates. Bull. U.S. Bur. Fisheries 41: 181–199.

    Google Scholar 

  • Lagler, K. F., J. Bardach, R. R. Miller. 1962. Ichthyology. John Wiley & Sons, New York. 545 pp.

    Google Scholar 

  • Larner, J. 1960. Other glucosidases. pp. 369–378. In: P. D. Boyer, H. Lardy & K. Myrback (ed.) The Enzymes, 2nd ed., Academic Press, New York.

    Google Scholar 

  • Lewin, R. A. (ed.) 1962. Physiology and Biochemistry of Algae. Academic Press, New York. 929 pp.

    Google Scholar 

  • Lin, C. C., R. C. Sicher, Jr. & J. M. Aronson. 1976. Hyphal wall chemistry inApodachlya. Arch. Microbiol. 108: 85–91.

    Article  CAS  Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  • Mackie, W. & R. D. Preston. 1974. Cell wall and intercellular region polysaccharides. pp. 40–86. In: W. D. P. Stewart (ed.) Algal physiology and biochemistry, University of California Press, Berkeley.

    Google Scholar 

  • Madgwick, J. C. & B. J. Ralph. 1972. Chemical composition of the Australian Bull Kelp,Durvillea potatorum. Aust. J. mar. Freshwat. Res. 23: 11–16.

    Article  CAS  Google Scholar 

  • Menzel, D. W. 1959. Utilization of algae for growth by the angelfish. J. Conseil Inter. L'expl. La Mer. 24: 308–313.

    Google Scholar 

  • Maynard, A. 1951. Animal nutrition, 3rd ed. McGraw-Hill, New York. 474 pp.

    Google Scholar 

  • Montgomery, W. L. 1977. Diet and gut morphology in fishes with special reference to the monkeyface prickleback,Cebidichthys violaceus (Stichaeidae: Blennioidei). Copeia 1977: 178–182.

  • Montgomery, W. L. 1978. Mechanisms of herbivory in damselfishes (Pomacentridae) from the Gulf of California, Mexico. Ph. D. Thesis, Arizona State University, Tempe, 91 pp.

  • Nagy, K. A. 1977. Cellulose digestion and nutrient assimilation inSauromalus obesus, a plant-eating lizard. Copeia 1977: 355–362.

  • Ogden, J. C. & P. S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Env. Biol. Fish. 3: 49–63.

    Google Scholar 

  • Paine, R. T. 1966. Endothermy in bomb calorimetry. Limnol. Oceanogr. 11: 126–129.

    CAS  Google Scholar 

  • Paine, R. T. 1971. The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. Syst. 2: 145–162.

    Article  Google Scholar 

  • Paine, R. T. & R. L. Vadas. 1969. Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar. Biol. 4: 79–86.

    Article  Google Scholar 

  • Percival, E. & R. H. McDowell. 1967. Chemistry and enzymology of marine algal polysaccharides. Academic Press, London. 219 pp.

    Google Scholar 

  • Phillips, A. M. 1969. Nutrition, digestion and energy utilization. pp. 391–432. In: W. S. Hoar & D. J. Randall (ed.) Fish Physiology, vol. 1, Academic Press, New York.

  • Prosser, C. L. (ed.) 1973. Comparative animal physiology, 3rd ed. W. B. Saunders, Philadelphia. 966 pp.

    Google Scholar 

  • Quast, J. C. 1968. Observations on the food of the kelp-bed fishes. Cal. Fish and Game 139: 109–142.

    Google Scholar 

  • Randall, J. E. 1967. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 5: 665–847.

    Google Scholar 

  • Russell-Wells, B. 1932. Fats of brown seaweeds. Nature (Lond.) 129: 654–655.

    CAS  Google Scholar 

  • Sera, H., Y. Ishida & H. Kadota. 1974. Bacterial flora in the digestive tracts of marine fish. pp. 467–490. In: R. R. Colwell & R. Y. Morita (ed.) Effect of the Ocean Environment on Microbial Activities, University Park Press, Baltimore.

    Google Scholar 

  • Stanley, J. G. & J. B. Jones. 1976. Feeding algae to fish. Aquaculture 7: 219–223.

    Article  Google Scholar 

  • Stewart, W. D. P. (ed.) 1974. Algal Physiology and Biochemistry. Univ. of California Press, Berkeley. 989 pp.

    Google Scholar 

  • Stickney, R. R. & S. E. Shumway. 1974. Occurrence of cellulase activity in the stomachs of fishes. J. Fish Biol. 6: 779–790.

    Article  CAS  Google Scholar 

  • Trust, T. J. & R. A. H. Sparrow. 1974. The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can. J. Microbiol. 20: 1219–1234.

    CAS  Google Scholar 

  • Tsuda, R. T. & P. G. Bryan. 1973. Food preference of juvenileSiganus rostratus andS. spinus in Guam. Copeia 1973: 604–606.

  • Venkatesh, B. & H. P. C. Shetty. 1978. Studies on the growth rate of the grass carpCtenopharyngodon idella (Valenciennes) fed on two aquatic weeds and on terrestrial grass. Aquaculture 13: 45–54.

    Article  Google Scholar 

  • von Westernhagen, H. 1974. Food preferences in cultured rabbitfishes (Siganidae). Aquaculture 3: 109–117.

    Google Scholar 

  • Williams, G. C. & D. C. Williams. 1955. Observations on the feeding habits of the Opaleye,Girella nigricans. Calif. Fish and Game 41: 203–208.

    Google Scholar 

  • Windell, J. T. 1978. Digestion and the daily ration of fishes. pp. 159–183. In: S. D. Gerking (ed.) Ecology of Freshwater Fish Production, John Wiley and Sons, New York.

    Google Scholar 

  • Windholz, M. (ed.) 1976. The Merck Index. Merck and Co., Inc., Rahway, New Jersey. 1167 pp.

    Google Scholar 

  • ZoBell, C. E. 1946. Marine microbiology. Chronica Botanica Co., Waltham, Massachusetts. 240 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, W.L., Gerking, S.D. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ Biol Fish 5, 143–153 (1980). https://doi.org/10.1007/BF02391621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391621

Keywords

Navigation