Environmental Biology of Fishes

, Volume 5, Issue 2, pp 143–153 | Cite as

Marine macroalgae as foods for fishes: an evaluation of potential food quality

  • W. Linn Montgomery
  • Shelby D. Gerking


A revitalized view of feeding by herbivorous marine fishes is sought through two questions. First, What characteristics of major taxa of algae identify them as predictably high or low quality foods? Second, are marine algae valuable foods for fishes which do not mechanically disrupt cell walls and do not harbor specialized enzymes or microbes capable of lysing cell walls? Energy, ash and nutrient content of 16 species of marine algae were employed to assess food quality of fleshy red, green, brown and calcareous red algae. On the basis of ash, calories, total protein and total lipid content, fleshy algae should be superior to calcareous algae as foods for fishes; in addition, green algae should be superior to brown algae and brown algae superior to red algae. When the probable digestibility of storage and extracellular carbohydrates is considered, green and red algae are predicted superior to brown algae as food. Two species of damselfishes (Pomacentridae) from the Gulf of California,Eupomacentrus rectifraenum andMicrospathodon dorsalis, eat red and green algae and ignore brown and calcareous algae. They feed, therefore, in a fashion consistent with predictions based only on algal chemistry. These fishes absorb at least 20–24% of the biomass, 57–67% of the protein, 46–56% of the lipid and 37–44% of the carbohydrate contained in algae eaten in the wild. Since these damselfishes do not masticate their food, it appears that herbivorous fishes can digest major fractions of algal nutrients without mechanical destruction of algal cells.


Algal biochemistry Carbohydrates Damselfishes Digestibility Energy Herbivores Nutrients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Al-Hussaini, A. H. 1947. The feeding habits and the morphology of the alimentary tract of some teleosts living in the neighborhood of the marine biological station. Publ. Mar. Biol. Stn. Ghardaqa (Red Sea) 5: 1–61.Google Scholar
  2. Bakus, G. J. 1969. Energetics and feeding in shallow marine waters. Int. Rev. Gen. Exptl. Zool. 4: 275–369.Google Scholar
  3. Barrington, E. J. W. 1957. The alimentary canal and digestion. pp. 109–161. In: M. E. Brown (ed.) The Physiology of Fishes, vol. 1, Academic Press, New York.Google Scholar
  4. Black, W. A. P. & W. J. Cornhill. 1951. A method for the estimation of fucosterol in seaweeds. J. Sci. Fd. Agric. 2: 387–390.Google Scholar
  5. Bryan, P. G. 1975. Food habits, functional digestive morphology, and assimilation efficiency of the rabbitfishSiganus spinus (Pisces, Siganidae) on Guam. Pac. Sci. 29: 269–277.Google Scholar
  6. Buddington, R. K. 1978. Digestion of an aquatic macrophyte byTilapia zillii (Cichlidae). M.S. Thesis, Arizona State University. 45 pp.Google Scholar
  7. Cowey, C. B. 1975. Aspects of protein utilization by fish. Proc. Nutr. Sec. 34: 57–63.Google Scholar
  8. Craigie, J. S. 1974. Storage products. pp. 206–235. In: W. D. P. Stewart (ed.) Algal physiology and biochemistry, University of California Press, Berkeley.Google Scholar
  9. Dawes, C. J., J. M. Lawrence, D. P. Cheney & A. C. Mathieson. 1974. Ecological studies of FlorideanEucheuma (Rhodophyta, Gigartinales). III. Seasonal variation of carrageenan, total carbohydrate, protein, and lipid. Bull. Mar. Sci. 24: 286–299.Google Scholar
  10. Dawson, E. Y. 1966. Marine botany. Holt, Rinehart and Winston, Inc., New York. 371 pp.Google Scholar
  11. Fange, R. & D. Grove. 1979. Digestion. pp. 162–260. In: W. S. Hoar, D. J. Randall & J. R. Brett (ed.) Fish physiology, vol. 8, Academic Press, New York.Google Scholar
  12. Fischer, Z. 1970. The elements of energy balance in grass carp (Ctenopharyngodon idella Val.). Part I. Pol. Arch. Hydrobiol. 17: 421–434.Google Scholar
  13. Folch, J., M. Lees & G. Y. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497–509.Google Scholar
  14. Gerking, S. D. 1952. The protein metabolism of sunfishes of different ages. Physiol. Zool. 25: 358–372.Google Scholar
  15. Gerking, S. D. 1955. Influence of rate of feeding on body composition and protein metabolism of bluegill sunfish. Physiol. Zool. 28: 267–282.Google Scholar
  16. Hayashi, K., S. Kida, K. Kato & M. Yamada. 1974. Component fatty acids of acetone-soluble lipids of 17 species of marine benthic algae. Bull. Jap. Sec. Sci. Fish 40: 609–617.Google Scholar
  17. Idler, D. R. & P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variations in the demosterol content of dulse (Rhodymenia plamata). Comp. Biochem. Physiol. 35: 679–687.Google Scholar
  18. Ishida, J. 1936. Distribution of the digestive enzymes in the digestive system of the stomachless fishes. Annot. Zool. Japon. 15: 263–284.Google Scholar
  19. Jensen, A. 1972. The nutritive value of seaweed meal for domestic animals. pp. 7–14. In: Proc. 7th Intern. Seaweed Symp., Tokyo University Press, Tokyo.Google Scholar
  20. Kapoor, B. G., H. Smit & I. A. Verighina. 1975. The alimentary canal and digestion in teleosts. Adv. Mar. Biol. 13: 109–239.Google Scholar
  21. Kenyon, W. A. 1925. Digestive enzymes in poikilothermal vertebrates. Bull. U.S. Bur. Fisheries 41: 181–199.Google Scholar
  22. Lagler, K. F., J. Bardach, R. R. Miller. 1962. Ichthyology. John Wiley & Sons, New York. 545 pp.Google Scholar
  23. Larner, J. 1960. Other glucosidases. pp. 369–378. In: P. D. Boyer, H. Lardy & K. Myrback (ed.) The Enzymes, 2nd ed., Academic Press, New York.Google Scholar
  24. Lewin, R. A. (ed.) 1962. Physiology and Biochemistry of Algae. Academic Press, New York. 929 pp.Google Scholar
  25. Lin, C. C., R. C. Sicher, Jr. & J. M. Aronson. 1976. Hyphal wall chemistry inApodachlya. Arch. Microbiol. 108: 85–91.CrossRefGoogle Scholar
  26. Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.Google Scholar
  27. Mackie, W. & R. D. Preston. 1974. Cell wall and intercellular region polysaccharides. pp. 40–86. In: W. D. P. Stewart (ed.) Algal physiology and biochemistry, University of California Press, Berkeley.Google Scholar
  28. Madgwick, J. C. & B. J. Ralph. 1972. Chemical composition of the Australian Bull Kelp,Durvillea potatorum. Aust. J. mar. Freshwat. Res. 23: 11–16.CrossRefGoogle Scholar
  29. Menzel, D. W. 1959. Utilization of algae for growth by the angelfish. J. Conseil Inter. L'expl. La Mer. 24: 308–313.Google Scholar
  30. Maynard, A. 1951. Animal nutrition, 3rd ed. McGraw-Hill, New York. 474 pp.Google Scholar
  31. Montgomery, W. L. 1977. Diet and gut morphology in fishes with special reference to the monkeyface prickleback,Cebidichthys violaceus (Stichaeidae: Blennioidei). Copeia 1977: 178–182.Google Scholar
  32. Montgomery, W. L. 1978. Mechanisms of herbivory in damselfishes (Pomacentridae) from the Gulf of California, Mexico. Ph. D. Thesis, Arizona State University, Tempe, 91 pp.Google Scholar
  33. Nagy, K. A. 1977. Cellulose digestion and nutrient assimilation inSauromalus obesus, a plant-eating lizard. Copeia 1977: 355–362.Google Scholar
  34. Ogden, J. C. & P. S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Env. Biol. Fish. 3: 49–63.Google Scholar
  35. Paine, R. T. 1966. Endothermy in bomb calorimetry. Limnol. Oceanogr. 11: 126–129.Google Scholar
  36. Paine, R. T. 1971. The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. Syst. 2: 145–162.CrossRefGoogle Scholar
  37. Paine, R. T. & R. L. Vadas. 1969. Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar. Biol. 4: 79–86.CrossRefGoogle Scholar
  38. Percival, E. & R. H. McDowell. 1967. Chemistry and enzymology of marine algal polysaccharides. Academic Press, London. 219 pp.Google Scholar
  39. Phillips, A. M. 1969. Nutrition, digestion and energy utilization. pp. 391–432. In: W. S. Hoar & D. J. Randall (ed.) Fish Physiology, vol. 1, Academic Press, New York.Google Scholar
  40. Prosser, C. L. (ed.) 1973. Comparative animal physiology, 3rd ed. W. B. Saunders, Philadelphia. 966 pp.Google Scholar
  41. Quast, J. C. 1968. Observations on the food of the kelp-bed fishes. Cal. Fish and Game 139: 109–142.Google Scholar
  42. Randall, J. E. 1967. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 5: 665–847.Google Scholar
  43. Russell-Wells, B. 1932. Fats of brown seaweeds. Nature (Lond.) 129: 654–655.Google Scholar
  44. Sera, H., Y. Ishida & H. Kadota. 1974. Bacterial flora in the digestive tracts of marine fish. pp. 467–490. In: R. R. Colwell & R. Y. Morita (ed.) Effect of the Ocean Environment on Microbial Activities, University Park Press, Baltimore.Google Scholar
  45. Stanley, J. G. & J. B. Jones. 1976. Feeding algae to fish. Aquaculture 7: 219–223.CrossRefGoogle Scholar
  46. Stewart, W. D. P. (ed.) 1974. Algal Physiology and Biochemistry. Univ. of California Press, Berkeley. 989 pp.Google Scholar
  47. Stickney, R. R. & S. E. Shumway. 1974. Occurrence of cellulase activity in the stomachs of fishes. J. Fish Biol. 6: 779–790.CrossRefGoogle Scholar
  48. Trust, T. J. & R. A. H. Sparrow. 1974. The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can. J. Microbiol. 20: 1219–1234.Google Scholar
  49. Tsuda, R. T. & P. G. Bryan. 1973. Food preference of juvenileSiganus rostratus andS. spinus in Guam. Copeia 1973: 604–606.Google Scholar
  50. Venkatesh, B. & H. P. C. Shetty. 1978. Studies on the growth rate of the grass carpCtenopharyngodon idella (Valenciennes) fed on two aquatic weeds and on terrestrial grass. Aquaculture 13: 45–54.CrossRefGoogle Scholar
  51. von Westernhagen, H. 1974. Food preferences in cultured rabbitfishes (Siganidae). Aquaculture 3: 109–117.Google Scholar
  52. Williams, G. C. & D. C. Williams. 1955. Observations on the feeding habits of the Opaleye,Girella nigricans. Calif. Fish and Game 41: 203–208.Google Scholar
  53. Windell, J. T. 1978. Digestion and the daily ration of fishes. pp. 159–183. In: S. D. Gerking (ed.) Ecology of Freshwater Fish Production, John Wiley and Sons, New York.Google Scholar
  54. Windholz, M. (ed.) 1976. The Merck Index. Merck and Co., Inc., Rahway, New Jersey. 1167 pp.Google Scholar
  55. ZoBell, C. E. 1946. Marine microbiology. Chronica Botanica Co., Waltham, Massachusetts. 240 pp.Google Scholar

Copyright information

© Dr. W. Junk bv Publishers 1980

Authors and Affiliations

  • W. Linn Montgomery
    • 1
  • Shelby D. Gerking
    • 1
  1. 1.Department of ZoologyArizona State UniversityTempeUSA

Personalised recommendations