Bioprocess Engineering

, Volume 15, Issue 5, pp 231–237 | Cite as

Protein release and foaming in Escherichia coli cultures grown in minimal medium

  • M. Törnkvist
  • G. Larsson
  • S. -O. Enfors
Originals

Abstract

Protein release was studied in Escherichia coli cultivations in minimal medium under different conditions. The energy source concentration was oscillating either due to the cultivation technique or due to an applied on/off feed rate concept in fed-batch cultivations. It was found that the magnitude of protein release was dependent on the cultivation technique and the strain. The use of batch technique resulted in highest specific rate of protein release compared to fed-batch cultivations. No dependence of protein release on oscillating glucose concentration could be distinguished with oscillating periods of minutes of carbon starvation. Proteins released by cells acted as foaming agents and caused stabilisation of foam, during cultivation of Escherichia coli grown in minimal medium. Since the total cell protein was reflected in the medium the protein release is considered to be caused by cell lysis. However, only a few dominating proteins were present in the foam.

Keywords

Foam Feed Rate Batch Cultivation Bioprocess Engineer Molecular Mass Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsson, G.; Törnkvist, M.; Ståhl Wernersson, E.; Trägårdh, C.; Noorman, H.; Emfors, S.-O.: Substrate gradients in bioreactors: Origin and consequences. Accepted for publication in Bioproc. Eng.Google Scholar
  2. 2.
    Neubauer, P.;Åhman, M.;Törnkvist, M.;Larsson, G.;Enfors, S.-O.: Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. J. Biotech. 43 (1995) 195–204CrossRefGoogle Scholar
  3. 3.
    Prins, A.;van't Riet, K.: Proteins and surface effects in fermentation: foam, antifoam and mass transfer. TIBTECH 5 (1987) 296–301CrossRefGoogle Scholar
  4. 4.
    Hall, M.J.;Dickinson, S.D.;Pritchard, R.;Evans, J.I.: Foams and foam control in fermentation processes. Prog. Ind. Microb. 12 (1973) 169–234Google Scholar
  5. 5.
    Kalischewski, K.;Bumbullis, W.;Schügerl, K.: Foam behaviour of biological media, I Protein Foams. Europ. J. Appl. Microbiol. Biotechn. 7 (1979) 21–31CrossRefGoogle Scholar
  6. 6.
    Bumbullis, W.;Kalischewski, K.;Schügerl, K.: Foam behaviour of biological media, II Salt Effects. Europ. J. Appl. Microbiol. Biotechn. 7 (1979) 147–154CrossRefGoogle Scholar
  7. 7.
    König, B.;Kalischewski, K.;Schügerl, K.: Foam behaviour of biological media, III Penicillium chrysogenum Cultivation Foam. Europ. J. Appl. Microbiol. Biotechn. 7 (1979) 251–258CrossRefGoogle Scholar
  8. 8.
    Buchholz, H.;Kalischewski, K.;Schügerl, K.: Foam behaviour of biological media, IV Hansenula polymorpha Cultivation Foams. Europ. J. Appl. Microbiol. Biotechn. 7 (1979) 321–331CrossRefGoogle Scholar
  9. 9.
    Bumbullis, W.;Schügerl, K.: Foam behaviour of biological media, V Alcohol Effects, Europ. J. Appl. Microbiol. Biotechn. 8 (1979) 17–25CrossRefGoogle Scholar
  10. 10.
    Bumbullis, W.;Schügerl, K.: Foam behaviour of biological media, VI Foam Stability. Salt effects. Europ. J. Appl. Microbiol. Biotechn. 11 (1981) 106–109CrossRefGoogle Scholar
  11. 11.
    Bumbullis, W.;Kalischewski, K.;Schügerl, K.: Foam behaviour of biological media, VII Surface viscosity and viscoelasticity. Europ. J. Appl. Microbiol. Biotechn. 11 (1981) 110–115CrossRefGoogle Scholar
  12. 12.
    Holme, T.;Arvidsson, S.;Lindholm, B.;Paulu, B.: Enzymes-Laboratory scale production. Proc. Biochem. 5 (1970) 1–5Google Scholar
  13. 13.
    Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle for protein-dye binding. Anal. 72 (1976) 248–254Google Scholar
  14. 14.
    Wallenfels, K.;Weil, R.: β-galactosidase. The enzymes. 3rd ed. 7 (1972) 617–663.CrossRefGoogle Scholar
  15. 15.
    Morrissey, J.: Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117 (1981) 307–310CrossRefGoogle Scholar
  16. 16.
    Chuba, P.;Palchaudhuri, S.: Requirement for cysteine in the color silver staining of proteins in polyacrylamide gels. Anal. Biochem. 156 (1985) 136–139CrossRefGoogle Scholar
  17. 17.
    Schnepf, R.W.;Gaden, Jr E.L.: Foam fractionation of proteins: Concentration of aqueous solutions of bovine serum albumin. J. Biochem. Microbiol. Techn. Eng. Vol 1, no 1 (1959) 1–8CrossRefGoogle Scholar
  18. 18.
    Manson, C.A.;Hamer, G.;Bryers, J.D.: The death and lysis of microorganisms in environmental processes. FEMS Microbiol Reviews 39 (1986) 373–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Törnkvist
    • 1
  • G. Larsson
    • 1
  • S. -O. Enfors
    • 1
  1. 1.Department of Biochemistry and BiotechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations