Advertisement

Calcified Tissue International

, Volume 68, Issue 5, pp 304–315 | Cite as

Localization of specific binding sites for125I-TGF-β1 to fenestrated endothelium in bone and anastomosing capillary networks in enamel organ suggests a role for TGF-β1 in angiogenesis

  • K. M. Dickson
  • J. J. M. Bergeron
  • A. Philip
  • M. O'Connor-McCourt
  • H. Warshawsky
Laboratory Investigations

Abstract

Previous studies have shown endothelial cells to be a major target for endocrine TGF-β in several soft tissues in the normal growing rat [26]. The potent effect of TGF-β1 on bone formation prompted us to analyze in detail the localization of specific binding sites for endocrine TGF-β in hard tissues. At 2.5 minutes after injection of125I-TGF-β1, specific binding, as demonstrated by quantitative radioautography, was localized to fenestrated endothelium participating in angiogenesis in the vascular invasion region of the growth plate in bone as well as to anatomizing capillary networks in the maturation zone of the enamel organ. At 15 minutes after injection, the bound ligand was internalized into endocytic vesicles of endothelial cells. In bone, quantitation revealed significant differences in receptor density between endothelia undergoing proliferation vs those in a state of elongation and anastomosis with neighboring endothelial cells. In the rat incisor, specific binding of125I-TGF-β1 to endothelium correlated with increased formation of anastomotic capillary networks. These studies identify differential specific binding sites of125I-TGF-β1 in angiogenically active endothelium, providing an important link between TGF-β1, the endothelium, and hard tissue development.

Key words

Endothelial cells TGF-β Hard tissue Angiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seyedin SM, Thomas TC, Thompson AY, Rosen DM, Piez KA (1985) Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci USA 82:2267–2271PubMedGoogle Scholar
  2. 2.
    Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A, Siege NR, Galluppi GR, Piez KA (1986) Cartilage-inducing factor-A: apparent identity to transforming growth factor-β. J Biol Chem 261:5693–5695.PubMedGoogle Scholar
  3. 3.
    Ellingsworth LR, Brennan JE, Fok K, Rosen DM, Bentz H, Piez KA, Seyedin SM (1986) Antibodies to the N-terminal portion of cartilage-inducing factor AA and transforming growth factor-β: immunohistochemical localization and association with differentiating cells. J Biol Chem 261:12362–12367PubMedGoogle Scholar
  4. 4.
    Seyedin SM, Segarini PR, Rosen DM, Thompson AY, Bentz H, Graycar J (1987) Cartilage-inducing factor-β is a unique protein structurally related to transforming growth factor-β. J Biol Chem 262:1946–1949PubMedGoogle Scholar
  5. 5.
    Centrella M, Horowitz MC, Wozney JM, McCarthy TL (1994) Transforming growth factor-beta gene family members and bone. Endocr Rev 15:27–39CrossRefPubMedGoogle Scholar
  6. 6.
    Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 124:2991–2994PubMedGoogle Scholar
  7. 7.
    Carrington JL, Roberts AB, Flanders KC, Roche NS, Reddi AH (1988) Accumulation, localization and compartmentalization of transforming growth factor-β during endochondral bone development. J Cell Biol 107:1969–1975CrossRefPubMedGoogle Scholar
  8. 8.
    Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110: 2195–2207.CrossRefPubMedGoogle Scholar
  9. 9.
    Massague J, Like B (1985) Cellular receptors for type β transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. J Biol Chem 260:2636–2645.PubMedGoogle Scholar
  10. 10.
    Massague J, Like B (1985) Cellular receptors for type β transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. J Biol Chem 260:2636–2645PubMedGoogle Scholar
  11. 10.
    Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB (1987) Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol 105:457–463CrossRefPubMedGoogle Scholar
  12. 11.
    Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop 250:261–276PubMedGoogle Scholar
  13. 12.
    Bonewald LF, Dallas SL (1994) Role of active and latent transforming growth factor-β in bone formation. J Cell Biolchem 55:350–357CrossRefGoogle Scholar
  14. 13.
    Hunter LH, Arsenault AL (1990a) Vascular invasion of the epiphyseal growth plate: analysis of metaphyseal capillary ultrastructure and growth dynamics. Anat Rec 227:223–231CrossRefPubMedGoogle Scholar
  15. 14.
    Hunter LH, Arsenault AL (1990b) Endothelial cell division in metaphyseal capillaries during endochondral bone formation in rats. Anat Rec 227:351–358CrossRefPubMedGoogle Scholar
  16. 15.
    Bonnaud A (1984) Modifications cellulaires au niveau de l'epithelium adamantin externe au cours de la vascularisation de l'organe de l'email chez le rat. J Biol Buccale 12:225–237PubMedGoogle Scholar
  17. 16.
    Trueta J (1963) The role of vessels in osteogenesis. J Bone Joint Surg 45:402–418Google Scholar
  18. 17.
    Trueta J, Buhr AJ (1963) The vascular contribution of osteogenesis: the vasculature supplying the epiphyseal cartilage in rachitic rats. J Bone Joint Surg 45:572–581Google Scholar
  19. 18.
    Ray RD (1976) Circulation and bone. In: Bourne GH (ed) Biochemistry and physiology of bone, vol 4. Academic Press, New York, pp 385–402Google Scholar
  20. 19.
    Adams D (1962) The blood supply to the enamel organ of the rodent incisor. Arch Oral Biol 7:279–286CrossRefPubMedGoogle Scholar
  21. 20.
    Skobe Z (1980) The vascular pattern in the papillary region of rat incisor and molar tooth enamel organ. J Dent Res 59:1457–1460PubMedGoogle Scholar
  22. 21.
    Sasaki T, Tominaga H, Higashi S (1984) Microvascular architecture of the enamel organ in the rat-incisor maturation zone: scanning and transmission electron microscopic studies. Acta Anat 118:205–213PubMedCrossRefGoogle Scholar
  23. 22.
    Kallenbach E (1966) Electron microscopy of the papillary layer of the rat incisor enamel organ during enamel maturation. J Ultrastruct Res 14:518–533CrossRefPubMedGoogle Scholar
  24. 23.
    Garant PR, Nalbandian J (1968) The fine structure of the papillary region of the mouse enamel organ Arch Oral Biol 13:1167–1185CrossRefPubMedGoogle Scholar
  25. 24.
    Garant PR (1972) The demonstration of complex gapjunction between the cells of the enamel organ with lanthanium nitrate. J Ultrastruct Res 40:333–348CrossRefPubMedGoogle Scholar
  26. 25.
    Skobe Z, Garant PR (1974) Electron microscopy of horseradish peroxidase uptake by papillary cells of the mouse incisor enamel organ. Arch Oral Biol 19:387–395CrossRefPubMedGoogle Scholar
  27. 26.
    Dickson K, Philip A, Warshawsky H, O'Connor-McCourt M, Bergeron JJM (1995) Specific binding of endocrine transforming growth factor-β1 to vascular endothelium. J Clin Invest 95:2539–2554PubMedGoogle Scholar
  28. 27.
    Wakefield LM, Smith DM, Masui T, Harris CC, Sporn MB (1987) Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol 105:965–975CrossRefPubMedGoogle Scholar
  29. 28.
    Martineau-Doize B, Warshawsky H, Dickson K, Lai WH, Bergeron JJM (1991) Localization of epidermal growth factor receptors in cells of the enamel organ of the rat incisor. Dev Biol 148:590–601CrossRefPubMedGoogle Scholar
  30. 29.
    Bergeron JJM, Levine G, Sikstrom R, O'Shaughnessy D, Kopriwa B, Nadler NJ, Posner BI (1977) [125I] labeled insulin to hepatocyte plasmalemma as visualized by electron microscope radioautography. Proc Natl Acad Sci USA 74:5051–5055PubMedGoogle Scholar
  31. 30.
    Salpeter MM, Bachmann L, Salpeter EE (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–20CrossRefPubMedGoogle Scholar
  32. 31.
    Fertuck HC, Salpeter MM (1974) Localization of acetylcholine receptor by125I-labeled alpha-bungarotoxin binding at mouse motor endplates. PNAS 71:1376–1378PubMedGoogle Scholar
  33. 32.
    Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43CrossRefPubMedGoogle Scholar
  34. 33.
    Martineau-Doize B, Lai WH, Warshawsky H, Bergeron JJM (1988) In vivo demonstration of cell types in bone that harbor epidermal growth factor receptors. Endocrinology 123:841–858PubMedCrossRefGoogle Scholar
  35. 34.
    Warna JL (2000) Regulation of Smad activity. Cell 100:189–192CrossRefGoogle Scholar
  36. 35.
    Choi ME, Ballermann BJ (1995) Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-β receptors. J Biol Chem 270:21144–21150CrossRefPubMedGoogle Scholar
  37. 36.
    Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type-β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedGoogle Scholar
  38. 37.
    Rosen D, Miller SC, DeLeon E, Thompson AY, Bentz H, Mathews M, Adams S (1994) Systemic administration of recombinant transforming growth factor beta 2 (rTGF-β2) stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone 15:355–359CrossRefPubMedGoogle Scholar
  39. 38.
    Machwate M, Zerath E, Holy X, Hott M, Godet D, Lomri A, Marie PJ (1995) Systemic administration of transforming growth factor-β2 prevents the impaired bone formation and osteopenia induced by unloading in rats. J Clin Invest 96: 1245–1253PubMedGoogle Scholar
  40. 39.
    Song X-Y, Gu M, Jin W-W, Klinman DM, Wahl SM (1998) Plasmid DNA endcoding transforming growth factor-β1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 101:2615–2621PubMedCrossRefGoogle Scholar
  41. 40.
    Pedrozo HA, Schwartz Z, Gomez R, Ornoy A, Xin-Sheng W, Dallas SL, Bonewald LF, Dean DD, Boyan BD (1997) Growth plate chondrocytes store latent transforming growth factor (TGF)-β1 in their matrix through latent TGF-β1 binding protein-1. J Cell Physiol 177:343–354CrossRefGoogle Scholar
  42. 41.
    Bonewald LF, Wakefield LM, Oreffo RO, Escobedo A, Twardzik DR, Mundy GR (1991) Latent forms of transformining growth factor-β (TGF-β) derived from bone cultures: identification of a naturally occurring 100 kDa complex with similarity to recombinant latent TGF-β. Mol Endocrinol 5:741–751PubMedCrossRefGoogle Scholar
  43. 42.
    Dean DD, Boyan BD, Muniz OE, Howell DS, Schwartz Z (1996) Vitamin D metabolites regulate matrix vesicle metalloproteinase content in a cell maturation-dependent manner. Calcif Tissue Int 59:109–116CrossRefPubMedGoogle Scholar
  44. 43.
    Pedrozo HA, Schwartz Z, Robinson M, Gomez R, Dean DD, Bonewald LF, Boyan BD (1999) Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-β1 from the extracellular matrix of growth plate chondrocytes. Endocrinology 140:5806–5816CrossRefPubMedGoogle Scholar
  45. 44.
    Yang E, Moses HL (1990) Transforming growth factor β1-induced changes in cell migration, proliferation and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741CrossRefPubMedGoogle Scholar
  46. 45.
    Mose HL, Yang EY, Pietenpol JA (1990) TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247CrossRefGoogle Scholar
  47. 46.
    Carlevaro MF, Cermelli S, Cancedda R, Descalzi-Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: autoparacrine role during endochondral bone formation. J Cell Sci 113:59–69PubMedGoogle Scholar
  48. 47.
    Gerber H-P, Thiennu HV, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med 5:623–628CrossRefPubMedGoogle Scholar
  49. 48.
    Mandriota SJ, Menoud P-A, Pepper MS (1996) Transforming growth factor β1 down regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells. J Biol Chem 271:11500–11505CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2001

Authors and Affiliations

  • K. M. Dickson
    • 1
  • J. J. M. Bergeron
    • 1
  • A. Philip
    • 2
  • M. O'Connor-McCourt
    • 2
  • H. Warshawsky
    • 1
  1. 1.Department of Anatomy and Cell BiologyMcGill UniversityMontrealCanada
  2. 2.Biotechnology Research InstituteMontrealCanada

Personalised recommendations