Arkiv för Matematik

, Volume 41, Issue 2, pp 341–361 | Cite as

On a covering problem related to the centered Hardy-Littlewood maximal inequality

  • Antonios D. Melas


We find the exact value of the best possible constant associated with a covering problem on the real line.


Real Line Covering Problem Maximal Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldaz, J. M., Remarks on the Hardy-Littlewood maximal function,Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1–9.MATHMathSciNetGoogle Scholar
  2. 2.
    Bernal, A., A note on the one-dimensional maximal function,Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 325–328.MATHMathSciNetGoogle Scholar
  3. 3.
    Brannan, D. A. andHayman, W. K., Research problems in complex analysis,Bull. London Math. Soc. 21 (1989), 1–35.MathSciNetGoogle Scholar
  4. 4.
    Melas, A., On the centered Hardy-Littlewood maximal operator,Trans. Amer. Math. Soc. 354 (2002), 3263–3273.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Melas, A., The best constant for the centered Hardy-Littlewood maximal inequality, to appear inAnn. of Math.Google Scholar
  6. 6.
    Trinidad Menarguez, M. andSoria, F., Weak type (1,1) inequalities of maximal convolution operators,Rend. Circ. Mat. Palermo 41 (1992), 342–352.MathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2003

Authors and Affiliations

  • Antonios D. Melas
    • 1
  1. 1.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations