Arkiv för Matematik

, Volume 20, Issue 1–2, pp 271–274 | Cite as

A Littlewood-Paley inequality for analytic measures

  • Louis Pigno
  • Brent Smith


Analytic Measure Compact Abelian Group Dyadic Interval Total Variation Norm Modular Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, P., On a conjecture of Littlewood and idempotent measures, Amer. J. Math.82 (1960), 191–212.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Davenport, H., On a theorem of P. J. Cohen, Mthematika7 (1960), 93–97.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fournier, J. J. F., On a theorem of Paley and the Littlewood conjecture, Arkiv för Matematik17 (1979), 199–216.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Paley, R. E. A. C., On the lacunary coefficients of power series, Ann. of Math.34 (1933), 615–616.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Pigno, L. andSmith, B., Quantitative behaviour of the norms of an analytic measure Proc. Amer. Math. Soc. (1982), in press.Google Scholar
  6. 6.
    Stein, E. M., ClassesHp, multiplicateurs et fonctions de Littlewood—Paley, C. R. Acad. Sci. Paris (Ser. A)263 (1966), 780–781.MATHMathSciNetGoogle Scholar
  7. 7.
    Meyer, Y., Complément à un théorème de Paley. C. R. Acad. Sci. Paris (Ser. A)262 (1966), 281–282.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag Leffler 1982

Authors and Affiliations

  • Louis Pigno
    • 1
  • Brent Smith
    • 2
  1. 1.Kansas State UniversityManhattanUSA
  2. 2.California Institute of TechnologyPassadenaUSA

Personalised recommendations