Archive for Mathematical Logic

, Volume 33, Issue 6, pp 427–453 | Cite as

RSUV isomorphisms for TAC i , TNC i and TLS

  • G. Takeuti


We investigate the second order bounded arithmetical systems which is isomorphic to TAC i , TNC i or TLS.


Mathematical Logic Arithmetical System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen B.: Arithmetizing uniform NC. Ann. Pure Appl. Logic53, 1–50 (1991)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Buss S.: Bounded arithmetic. Napoli: Biblopolis 1986Google Scholar
  3. 3.
    Clote P., Takeuti G.: Bounded arithmetic for NC, ALOGTIME, L and NL. Ann. Pure Appl. Logic56, 73–117 (1992)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Colte P., Takeuti G.: First order bounded arithmetic and small boolean circuit complexity classes (to appear)Google Scholar
  5. 5.
    Håstad J.: Computational limitations of small-depth circuits. Cambridge, Massachusetts: MIT Press 1987Google Scholar
  6. 6.
    Hájek P., Pudlák P.: Metamathematics of first-order arithmetic. Berlin Heidelberg New York: Springer 1991Google Scholar
  7. 7.
    Krajíček J., Takeuti G.: On boundedΣ 11 polynomial induction. In: Buss S., Scott P. (eds.) Feasible mathematics, pp. 259–280. Basel: Birkhäuser 1990Google Scholar
  8. 8.
    Takeuti G.: Proof theory, 2nd ed. Amsterdam: North-HollandGoogle Scholar
  9. 9.
    Takeuti G.:S 3i and0V 2i(BD). Arch. Math. Logic29, 149–169 (1990)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Takeuti G.: RSUV Isomorphisms. In: Clote P., Krajíček J. (eds.) Arithmetic, proof theory and computational complexity, pp. 364–386. Oxford: Oxford Univ. Press 1993Google Scholar
  11. 11.
    Wilkie A.J., Paris J.B.: On the scheme of induction for bounded arithmetical formulas. Ann. Pure Appl. Logic35, 261–302 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Yao A.: Separating the polynomial-time hierachy by oracles. Proceedings 26th Annual IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. Takeuti
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations