Advertisement

Classification of alpha-active workplace aerosols based on coefficient of transportability as measured by the dialysis method

  • V. F. Khokhryakov
  • K. G. Suslova
  • I. A. Tseveloyova
  • E. E. Aladova
  • R. E. Filipy
Actinides in Biological and Environmental Systems

Abstract

This report describes a method by which potentially inhaled workplace aerosols containing plutonium compounds are classified on the basis of measured transportability in Ringer’s solution. It is suggested that the criterion “transportability” be used in the ICRP respiratory tract model. Transportability is measured as the fraction of plutonium alpha activity, deposited on a collecting filter, that passes through a semi-permeable membrane in Ringer’s physiological solution during two days of dialysis. First order kinetic equations are used for explanation of dialysis results. The dissolution characteristics of alpha-active aerosols are important in interpretation of their passage from the lungs after inhalation.

Keywords

Physical Chemistry Inorganic Chemistry Respiratory Tract Kinetic Equation Plutonium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Annals of the ICRP, Publ. No. 30:Limits for intakes of Radionuclides by Workers, Pergamon Press, Oxford, 1978.Google Scholar
  2. 2.
    Annals of the ICRP, Publ. No. 66: Human Respiratory Tract Model for Radiological Protection Pergamon Press, Oxford, 1993.Google Scholar
  3. 3.
    H. Smith, G. N. Stradling, B. W. Loveless, G. J. Ham, Health Phys., 33 (1977) 539.Google Scholar
  4. 4.
    G. M. Kanapilly, O. G. Raabe, C. H. Goh, R. A. Chimenti, Health Phys., 24 (1973) 497.Google Scholar
  5. 5.
    O. G. Raabe, G. M. Kanapily, H. A. Boyd, Inhalation Toxicology Research Institute Annual Report 1972–1973, Albuquerque, 1973.Google Scholar
  6. 6.
    A. N. Efimova, A. M. Vorobyev, Gigiena and Sanitariya, 1 (1977) 41.Google Scholar
  7. 7.
    V. D. Vashi, C. S. Suryanarayanan, P. Kotrappa, Health Phys., 39 (1980) 108.Google Scholar
  8. 8.
    J. J. Miglio, B. A. Muggenburg, A. L. Brooks, Health Phys., 33 (1977) 449.Google Scholar
  9. 9.
    O. G. Raabe, S. V. Teague, N. I. Richardson, L. S. Nelson, Health Phys., 35 (1978) 663.Google Scholar
  10. 10.
    A. F. Eidson, J. A. Mewhinney, Health Phys., 45 (1983) 1023.Google Scholar
  11. 11.
    B. I. Zbarskiy, I. I. Ivanov, S. R. Mordashev, Biol. Chem., (1951) 619.Google Scholar
  12. 12.
    K. G. Suslova, R. E. Filipy, V. F. Khokhryakov, S. A. Romanov, R. L. Kathren, Radiation Prot. Dosim., 67 (1996) 13.Google Scholar
  13. 13.
    V. F. Khokhrykov, S. A. Romanov, K. G. Suslova, Health Effects of Internally Deposited Radionuclides: Emphasis on Radium and Thorium, World Scientific, London (1995) 117.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • V. F. Khokhryakov
    • 1
  • K. G. Suslova
    • 1
  • I. A. Tseveloyova
    • 1
  • E. E. Aladova
    • 1
  • R. E. Filipy
    • 2
  1. 1.Branch No. 1Federal Research Center Biophysics InstituteOzyorskRussia
  2. 2.U. S. Transuranium and Uranium RegistriesWashington State UniversityRichlandUSA

Personalised recommendations