Skip to main content
Log in

Determination of isotopic thorium in biological samples by combined alpha-spectrometry and neutron activation analysis

  • Actinides in Biological and Environmental Systems
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The determination of isotopic thorium by alpha-spectrometric methods is a routine practice for bioassay and environmental measurement programs. Alpha-spectrometry has excellent detection limits (by mass) for all isotopes of thorium except232Th due to its extremely long half-life. This paper reports a pre-concentration neutron activation analysis (PCNAA) method for232Th that may be performed following alpha-spectrometry if a suitable source preparation material is utilized. Human tissues and other samples were spiked with229Th and the thorium was isolated from the sample using ion exchange chromatography. The thorium was then electrodeposited from a sulfate-based medium onto a vanadium planchet, counted by alpha-spectrometry, and then analyzed for232Th by neutron activation analysis. The radiochemical yield was determined from the alpha-spectrometric method. Detection limits for232Th by this PCNAA method are approximately 50 times lower than achieved by alphaspectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Wrenn, N. P. Singh, N. Cohen, S. A. Ibrahim, G. Saccomanno, Thorium in Human Tissues, NUREG/CR-1227, US Nuclear Regulatory Commission. Washington, D.C., 1981.

    Google Scholar 

  2. R. L. Kathren, R. L. Hill, Health Phys., 63 (1992) 72.

    CAS  Google Scholar 

  3. International Commission on Radiological Protection, Limits for intakes by workers, ICRP Publication 30, Pergammon Press, Oxford, 1978.

    Google Scholar 

  4. Environmental Measurements Laboratory Procedures Manual: HASL-300. 27th ed., U.S. Dept. of Energy, New York, 1992.

  5. E. Browne, R. B. Firestone, Table of Radioactive Isotopes,V. S. Shirley (Ed.), John Wiley & Sons, New York, 1986.

    Google Scholar 

  6. F. W. Walker, F. R. Parrington, F. Feiner, Nuclides and Isotopes, 14th ed., GE Nuclear, San Jose, CA, 1989.

    Google Scholar 

  7. K. Kitamura, Y. Inazawa, T. Morimoto, K. Sato, H. Higuchi, K. Imai, K. Watari, J. Radioanal. Nucl. Chem., 217 (1997) 175.

    Article  CAS  Google Scholar 

  8. R. J. Clifton, M. Farrow, E. L. Hamilton, Ann. Occ. Hyg., 14 (1971) 303.

    CAS  Google Scholar 

  9. C. M. Sunta, H. S. Dang, D. D. Jaiswal, J. Radioanal. Nuclear Chem., 1 (1987) 149.

    Google Scholar 

  10. H. F. Lucas, Jr., D. N. Edgington, F. Markun, Health Phys., 19 (1970) 739.

    CAS  Google Scholar 

  11. D. N. Edgington, Intern. J. Applied Radiation Isotopes, 18 (1967) 11.

    CAS  Google Scholar 

  12. M. Picer, P. Strohal, Anal. Chim. Acta, 40 (1968) 131.

    Article  CAS  Google Scholar 

  13. D. D. Jaiswal, H. S. Dang, C. M. Sunta, J. Radioanal. Nucl. Chem., 88 (1985) 225.

    CAS  Google Scholar 

  14. S. E. Glover, R. H. Filby, S. B. Clark, J. Radioanal. Nucl. Chem., 234 (1998) 213.

    CAS  Google Scholar 

  15. H. G. Petrow, C. D. Strehlow, Anal. Chem., 39 (1967) 265.

    CAS  Google Scholar 

  16. J. S. Crain, L. L. Smith, J. S. Yaeger, J. A. Alvarodo, J. Radional. Nucl. Chem., 194 (1995) 133.

    Article  CAS  Google Scholar 

  17. J. S. Crain, Spectroscopy, 11 (1996) 31.

    Google Scholar 

  18. J. S. Crain, B. L. Mikesell, Appl. Spectrosc., 46 (1992) 1498.

    Article  CAS  Google Scholar 

  19. K. W. Terry, G. S. Hewson, G. Meuner, Health Phys., 68 (1995) 105.

    CAS  Google Scholar 

  20. R. Kathren, A. Desrosiers, D. Haggard, J. Selby, Neutron Activation Analysis of Thorium-230 from the International Conference on radiation Hazards in Mining: Control, Measurement, and Medical Aspects, October 4–9, 1981, Society of Mining Engineers, Inc., New York.

    Google Scholar 

  21. J. F. McInroy, H. A. Boyd, B. C. Eutsler, D. Romero, Health Phys., 49 (1985) 587.

    CAS  Google Scholar 

  22. S. E. Glover, R. H. Filby, S. B. Clark, J. Radioanal. Nucl. Chem., 234 (1998) 201.

    CAS  Google Scholar 

  23. N. P. Singh, M. E. Wrenn, Health Phys., 44 (1983) 469.

    CAS  Google Scholar 

  24. M. E. Wrenn, N. P. Singh, G. Saccomanno, Health Phys., 44 (1983) 385.

    CAS  Google Scholar 

  25. S. A. Ibrahim, M. E. Wrenn, N. P. Singh, Health Phys., 44 (1983) 213.

    CAS  Google Scholar 

  26. J. F. McInroy, E. R. Gonzales, J. J. Miglio, Health Phys., 63 (1992) 54.

    CAS  Google Scholar 

  27. American National Standards Institute, Performance Criteria for Radiobioassay, ANSI N13.30, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, S.E., Filby, R.H. & Clark, S.B. Determination of isotopic thorium in biological samples by combined alpha-spectrometry and neutron activation analysis. J Radioanal Nucl Chem 234, 201–208 (1998). https://doi.org/10.1007/BF02389772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02389772

Keywords

Navigation