Skip to main content
Log in

Catenation: Quantitative methods for the definition of coenoclines

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

Catenation is defined as the ordering of elements in continuous sequences that best accounts for local similarities without assuming linear relations. It is thus a non-linear relative of ordination. When applied to phytosociological data it is equivalent to the detection and definition of coenoclines.

Several mathematical methods of catenation are available and potentially useful in phytosociology. One such method, continuity analysis (parametric mapping) has been tested on a variety of simulated and real vegetation data. Despite some computation problems, it usually succeeded in accurately recovering simulated coenoclines which were strongly curved in Euclidean vegetation space. In data from Wisconsin vegetation it defined a first catena which was similar to the ‘continuum’ defined by the leading dominants method; but in one case indicated some modifications and the existence of a second dimension. When applied to other sets of real data, the method detected between one and three catenae or nonlinear dimensions, which were usually closely related to environmental gradients. The relationships of species (or communities) to these catenae tended to be of a bell-shaped form, even though such a form is not explicitly assumed in the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Austin, M. P. & I. Noy-Meir 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Ayyad, M. A. G. & R. L. Dix 1964. An analysis of a vegetation-microenvironmental complex on prairie slopes in Saskatchewan. Ecol. Monogr. 34: 421–442.

    Google Scholar 

  • Bannister, P. 1968. An evaluation of some procedures used in simple ordinations. J. Ecol. 56: 27–34.

    Google Scholar 

  • Beals, E. W. & J. B. Cope 1964. Vegetation and soils in Eastern Indiana woods. Ecology 45: 777–799.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Brown, R. T. & J. T. Curtis 1952. The upland conifer-hardwood forests of northern Wisconsin. Ecol. Monogr. 22: 217–234.

    Google Scholar 

  • Buell, M. F., A. N. Langford, D. W. Davidson & L. F. Ohmann, 1966. The upland forest continuum in northern New Jersey. Ecology 47: 416–432.

    Google Scholar 

  • Curtis, J. T. & R. P. McIntosh 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.

    Google Scholar 

  • Flenley, J. R. 1969. The vegetation of the Wabag region, New Guinea highlands: a numerical study. J. Ecol. 57: 465–490.

    Google Scholar 

  • Gauch, H. G. Jr. 1973a. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • Gauch, H. G. Jr. 1973b. A quantitative evaluation of the Bray-Curtis ordination. Ecology 54: 829–836.

    Google Scholar 

  • Gauch, H. G. Jr. & G. B. Chase 1973. Fitting the Gaussian curve in ecological applications. (manuscript).

  • Gauch, H. G. Jr., G. B. Chase & R. H. Whittaker 1973. Ordination of vegetation samples by Gaussian species distributors. (manuscript).

  • Gauch, H. G. Jr. & R. H. Whittaker 1972a. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • Gauch, H. G. Jr. & R. H. Whittaker 1972b. Comparison of ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • Gimingham, C. H., N. M. Pritchard & R. M. Cormack 1966. Interpretation of a vegetational mosaic on limestone in the island of Gotland. J. Ecol. 54: 481–502.

    Google Scholar 

  • Goodall, D. W. 1954. Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Aust. J. Bot. 2: 304–324.

    Article  Google Scholar 

  • Greig-Smith, P. 1964. Quantitative plant ecology (2nd edition). Butterworths, London. XII+256 pp.

    Google Scholar 

  • Groenewoud, H. van 1965. An analysis and classification of white spruce communities in relation to certain habitat factors. Can. J. Bot. 43: 1025–1036.

    Google Scholar 

  • Groenewoud, H. van 1973. Theoretical considerations on the quantitative covariation of plant species along ecological gradients with regard to the multivariate analysis of vegetation data. (manuscript).

  • Guttman, P. 1955. A generalized simplex for factor analysis. Psychometrika 20: 173–192.

    Google Scholar 

  • Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal, J. B. & J. D. Carroll 1969. Geometrical models and badness-of-fit functions. Multivariate analysis II, ed. P. R. Krishnaiah, 639–671. Academic.

  • Maarel, E. van der 1969. On the use of ordination models in phytosociology. (Germ. summ.) Vegetatio 19: 21–46.

    Google Scholar 

  • Maarel, E. van der & J. Leertouwer 1967. Variation in vegetation and species diversity along a local environmental gradient. Acta Bot. Neerl. 16: 211–221.

    Google Scholar 

  • McDonald, R. P. 1962. A general approach to nonlinear factor analysis. Psychometrika 27: 397–415.

    Google Scholar 

  • McDonald, R. P. 1967. Numerical methods for polynomial models in nonlinear factor analysis. Psychometrika 32: 77–112

    Google Scholar 

  • McIntosh, R. P. 1973. Matrix and plexus techniques. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 159–191. Junk, The Hague.

    Google Scholar 

  • Moore, J. J., P. Fitzsimmons, E. Lambe & J. White 1970. A comparison and evaluation of some phytosociological techniques. Vegetation 20: 1–20.

    Google Scholar 

  • Norris, J. M. & J. P. Barkham 1970. A comparison of some Cotswold beechwoods using multiple-discriminant analysis. J. Ecol. 58: 603–620.

    Google Scholar 

  • Noy-Meir, I. 1970. Component analysis of semi-arid vegetation in southeastern Australia. Ph. D. thesis, Australian National University, Canberra.

    Google Scholar 

  • Noy-Meir, I. 1971. Multivariate analysis of the semi-arid vegetation in South-eastern Australia. I. Nodal ordination by component analysis. Proc. Ecol. Soc. Austr. 6: 159–193.

    Google Scholar 

  • Noy-Meir, I. 1974. Multivariate analysis of the semi-arid vegetation in South-eastern Australia. II. Vegetation catenae and environmental gradients. Austr. J. Bot. 22: 115–140.

    Google Scholar 

  • Noy-Meir, I. & M. P. Austin 1970. Principal component ordination and simulated vegetational data. Ecology 51: 551–552.

    Google Scholar 

  • Orloci, L. 1966. Geometric models in ecology. I. The theory and application of some ordination models. J. Ecol. 54: 193–215.

    Google Scholar 

  • Orloci, L. 1967. An agglomeration method for classification of plant communities. J. Ecol. 55: 193–206.

    Google Scholar 

  • Orloci, L. 1973. Ordination by resemblance matrices. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 251–286. Junk, The Hague.

    Google Scholar 

  • Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. I and II. Psychometrika 27: 125–140 and 219–246.

    Google Scholar 

  • Shepard, R. N. & J. D. Carroll 1966. Parametric representation of non-linear data structures. In: Multivariate analysis, ed. P. R. Krishnaiah, P. 561–592. Academic.

  • Sneath, P. H. A. 1966. A method for curve seeking from scattered points. Comput. J. 8: 383–391.

    Google Scholar 

  • Swan, J. M. A. 1970. An examination of some ordination problems by use of simulated vegetation data. Ecology 51: 89–102.

    Google Scholar 

  • Swan, J.M.A., R. L. Dix & C. F. Wehrhahn 1969. An ordination technique based on the best possible stand-defined axes and its application to vegetational analysis. Ecology 50: 206–212.

    Google Scholar 

  • Wade, L. K. 1968. The alpine and subalpine vegetation of Mt. Wilhelm, New Guinea. Ph. D. Thesis, Australian National University, Canberra.

    Google Scholar 

  • Westhoff, V. & E. van der Maarel 1973. The Braun-Blanquet approach. In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science, 5: 617–726. Junk, The Hague.

    Google Scholar 

  • Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Google Scholar 

  • Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 207–264.

    Google Scholar 

  • Whittaker, R. H. 1970. The population structure of vegetation. (Germ. summ.) In: Gesellschaftsmorphologie (Strukturforschung), ed. R. Tüxen, Ber. Symp. Int. Ver. Vegetationskunde, Rinteln 1966: 39–62.

  • Whittaker, R. H. & H. G. Gauch, Jr. 1973. Evaluation of ordination techniques. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 289–322. Junk, The Hague.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature of taxa mentioned in examples d and e follows Gleason, 1950, the new Britton and Brown illustrated Flora of the N.E. United States and adjacent Canada.

This was part of the work for a Ph. D. thesis at the Department of Biogeography and Geomorphology, Research School of Pacific Studies of the Australian National University. I am grateful to my supervisors, Donald Walker and Bill Williams, for their advice, to Mike Austin and Mike Dale for useful discussions and to Hugh Gauch and Robert Whittaker for the manuscript of their paper on Gaussian ordination and for the ensuing discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noy-Meir, I. Catenation: Quantitative methods for the definition of coenoclines. Plant Ecol 29, 89–99 (1974). https://doi.org/10.1007/BF02389713

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02389713

Keywords

Navigation