Semigroup Forum

, Volume 6, Issue 1, pp 340–345 | Cite as

The weakly almost periodic compactification: Another approach

  • Paul Milnes


Periodic Function Dense Subset Semigroup Forum General Topology Left Translate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berglund, J. F., and K. H. Hofmann,Compact Semitopological Semigroups and Weakly Almost Periodic Functions, Lecture Notes in Mathematics 42, Berlin, Springer, 1967.MATHGoogle Scholar
  2. 2.
    Burckel, R. B.,Weakly Almost Periodic Functions on Semigroups, New York, Gordon and Breach, 1970.MATHGoogle Scholar
  3. 3.
    DeLeeuw, K., and I. Glicksberg,Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dunford, N., and J. T. Schwartz,Linear Operators I, second printing, New York, Interscience, 1964.Google Scholar
  5. 5.
    Kelley, J. L.,General Topology, Princeton, Van Nostrand, 1955.MATHGoogle Scholar
  6. 6.
    Milnes, P.,Compactifications of semitopological semigroups, submitted.Google Scholar
  7. 7.
    Pym, J. S.,The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1964), 84–104.MathSciNetMATHGoogle Scholar
  8. 8.
    Pym, J. S.,On almost periodic compactifications, Math. Scand. 12 (1963), 189–198.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Paul Milnes
    • 1
  1. 1.The University of Western OntarioLondonCanada

Personalised recommendations