Semigroup Forum

, Volume 6, Issue 1, pp 227–231 | Cite as

The syntactic monoid of a hypercode

  • G. Thierrin


This paper gives a characterization of the syntactic monoid of a hypercode H over a finite alphabet X, a hupercode being a non empty set of non empty words over X, which are pairwise incomparable relatively to the embedding partial order of X.


Semigroup Forum Finite Order Zero Element Empty Word Free Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CLIFFORD, A. H. and PRESTON, G. B.,The Algebraic Theory of Semigroups, 1 and 2, Math. Surveys 7, (1961 and 1967), Amer. Math. Soc., Providence, Rhode Island.MATHGoogle Scholar
  2. [2]
    HAINES, L.H., On Free Monoids Partially Ordered by Embedding, Journal of Combinatorial Theory 6, (1969), 94–98.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    JULLIEN, M. P.,Sur un théorème d'extension dans la théorie des mots, C. R. Acad. Sc. Paris, t. 266, Série A, (1968), 651–654.MATHGoogle Scholar
  4. [4]
    NIVAT, M.,Eléments de la théorie générale des codes, inAutomata Theory”, (E. R. Caianiello, Ed.), (1966), Academic Press, New York, 278–294.Google Scholar
  5. [5]
    SCHEIN, B. M.,Homomorphisms and Subdirect Decompositions of Semigroups, Pac. J. of Math., 17, No. 3, (1961), 529–547.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    SHYR, H. J. and THIERRIN, G.,Hypercodes (to appear).Google Scholar
  7. [7]
    SCHUTZENBERGER, M. P.,Une Théorie Algébrique du Codage, Exposé no 15, Séminaire Dubreil-Pisot, (1955), Institut Henri Poincaré, Paris.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • G. Thierrin
    • 1
  1. 1.University of Western OntarioLondonCanada

Personalised recommendations