, Volume 1, Issue 2, pp 188–192 | Cite as

Recent work on the ionic and electronic properties of materials with the pyrochlore and related structures

  • U. Heider
  • J. Schenk
  • L. Jörissen
  • R. A. Huggins
  • W. Witschel


Pyrochlores with the general formula A2B2O7X might be promising candidates for ionic or mixed-conduction applications because of their interesting crystallographic structure which allows a wide range of possible dopant compositions.

The cubic prototype structure can be viewed as having an arrangement of fixed BO6 octahedra penetrated by a three-dimensional network of tunnels. By control of the composition, the occupancy of these tunnels can be modified. In some cases, species within the tunnels can be mobile. Possible modifications of the ionic and electronic properties of materials with this structure by doping on either A or B-site positions will be discussed.


Radius Ratio Tungsten Bronze Pyrochlore Structure Anion Conductor Prototype Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    J. P. Goodenough et al., Mat. Res. Bull.11, 203 (1976)CrossRefGoogle Scholar
  2. [2]
    Moon et al., ECS; SOFC Proc. (1984) 30Google Scholar
  3. [3]
    M. Spears et al., in: Proc. Ionic And Mixed Conducting Ceramics12, 32 (1991)Google Scholar
  4. [4]
    C. Richard et al., J. Phys. Chem.94, 55 (1983)Google Scholar
  5. [5]
    H. Gaertner, Neues Jahrb. Mineral. Geol. Palaeontol.61, 1 (1930)Google Scholar
  6. [6]
    M.A. Subramanian et al., Prog. Solid State Chem.15, 55 (1983)CrossRefGoogle Scholar
  7. [7]
    J.M. Longo et al., Mat. Res. Bull.4, 191 (1969)CrossRefGoogle Scholar
  8. [8]
    A.W. Sleight, Inorg. Chem.7, 1704 (1968)CrossRefGoogle Scholar
  9. [9]
    A. Coucou et al., Solid State Ionics28–30, 1762 (1988)CrossRefGoogle Scholar
  10. [10]
    J.L. Fourquet, Mat. Res. Bull.14, 937 (1979)CrossRefGoogle Scholar
  11. [11]
    C.M. Mariet et al., Solid State Ionics18/19, 1013 (1986)CrossRefGoogle Scholar
  12. [12]
    M.P. van Dijk et al., Mat. Res. Bull.19, 1149 (1984)CrossRefGoogle Scholar
  13. [13]
    A. Haddad et al., J. Solid State Chem.109, 181 (1994)CrossRefGoogle Scholar
  14. [14]
    C. Wagner, Private Memorandum 29.12.1964Google Scholar
  15. [15]
    S. Stotz, C. Wagner, Ber. Bunsen-Ges.70, 781 (1966)Google Scholar
  16. [16]
    F.S. Galasso, Int. Ser. Monog. Solid State Phys.7, 103 (1970)Google Scholar
  17. [17]
    M. S. Wittingham et al., J. Chem. Phys.54, 409 (1971)Google Scholar
  18. [18]
    D.W. Strickler et al., J. Am. Ceram. Soc.47, 122 (1964)CrossRefGoogle Scholar
  19. [19]
    J. Grins et al., Mat. Res. Bull.15, 53 (1980)CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1995

Authors and Affiliations

  • U. Heider
    • 1
  • J. Schenk
    • 1
  • L. Jörissen
    • 1
  • R. A. Huggins
    • 1
  • W. Witschel
    • 1
  1. 1.Center for Solar Energy and Hydrogen Research Division 3: Energy Storage and ConversionUlmGermany

Personalised recommendations