Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In situ controlled promotion of catalyst surfaces via solid electrolytes: Ethylene oxidation on Rh and propylene oxidation on Pt

  • 24 Accesses

  • 5 Citations

Abstract

The kinetics of C2H4 oxidation on Rh and C3H6 oxidation on Pt were investigated on polycrystalline metal films interfaced with ZrO2(8mol%Y2O3) solid electrolyte in galvanic cells of the type:

$$\begin{gathered} C_2 H_4 ,O_2 ,Rh/YSZ/Pt,O_2 and \hfill \\ C_3 H_6 ,O_2 ,CO_2 ,Pt/YSZ/Au,C_3 H_6 ,O_2 ,CO_2 \hfill \\ \end{gathered} $$

It was found that by applying positive potentials and thus, supplying O2- to the catalyst surface, up to 100-fold increases in catalytic rate can be obtained (electrophobic NEMCA effect) for the case of C2H4 oxidation on Rh. For the case of C3H6 oxidation on Pt, up to 6-fold increases in catalytic rate were observed by negative potentials, i.e. removing of O2- from the catalyst surface (electrophilic NEMCA effect).

The induced changes in catalytic rates for both reactions were found to be 103 to 5×104 higher than the rates of ion transfer to or from the catalyst-electrode surface. For both reactions it was found that varying the catalyst potential, and thus work function, causes pronounced changes in activation energy and preexponential factor, leading to an interesting demonstration of the well-known “compensation” effect.

The results can be rationalized on the basis of the theoretical considerations invoked to explain previous NEMCA studies, i.e. the effect of changing work function on chemisorptive bond strengths of electron acceptor and electron donor adsorbates.

This is a preview of subscription content, log in to check access.

5. References

  1. [1]

    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343 (6259), 625 (1990)

  2. [2]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catalysis Today, Elsevier, Amsterdam,11, 303–442 (1992)

  3. [3]

    I.V. Yentekakis and C.G. Vayenas, J. Catal.111, 170 (1988)

  4. [4]

    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem.92, 5083 (1988)

  5. [5]

    S. Bebelis and C.G. Vayenas, J. Catal.118, 125 (1989)

  6. [6]

    S. Neophytides and C.G. Vayenas, J. Catal.118, 147 (1989)

  7. [7]

    C.G. Vayenas, S. Bebelis, S. Neophytides and I.V. Yentekakis, Appl. Phys. A49, 95 (1989)

  8. [8]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, P. Tsiakaras and H. Karasali, Platinum Metals Rev.34, 122 (1990)

  9. [9]

    C.G. Vayenas and S. Neophytides, J. Catal.127, 645 (1991)

  10. [10]

    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal.128, 415 (1991)

  11. [11]

    S. Ladas, S. Bebelis and C.G. Vayenas, Surf. Sci.251/252, 1062 (1991)

  12. [12]

    C.G. Vayenas, S. Bebelis and C. Kyriazis, Chemtech21, 500 (1991)

  13. [13]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and S. Neophytides, Solid State Ionics53–56, 97 (1992)

  14. [14]

    S. Bebelis and C.G. Vayenas, J. Catal.138, 570, (1992);138, 588 (1992)

  15. [15]

    P. Tsiakaras and C.G. Vayenas, J. Catal.140, 53 (1993)

  16. [16]

    I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992)

  17. [17]

    C.A. Cavalca, G. Larsen, C.G. Vayenas and G.L. Haller, J. Phys. Chem.97, 6115 (1993)

  18. [18]

    H. Alqahtany, P. Chiang, D. Eng and M. Stoukides, Catal. Letters13, 289 (1992)

  19. [19]

    J. Pritchard, Nature (London)343, 592 (1990)

  20. [20]

    I.V. Yentekakis, G. Morggridge, C.G. Vayenas, and R.M. Lambert, J. Catal.146, 292 (1994)

  21. [21]

    T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Catal. Lett.41, 321 (1990)

  22. [22]

    I.V. Yentekakis and C.G. Vayenas, J. Catal.,149, 238 (1994)

  23. [23]

    S. Neophytides, D. Tsiplakides, P. Stonehart, M. Jaksic and C.G. Vayenas, Nature370, 45 (1994)

  24. [24]

    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993)

  25. [25]

    C.A. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catal. (1995), in press

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaloyannis, A.C., Pliangos, C.A., Yentekakis, I.V. et al. In situ controlled promotion of catalyst surfaces via solid electrolytes: Ethylene oxidation on Rh and propylene oxidation on Pt. Ionics 1, 159–164 (1995). https://doi.org/10.1007/BF02388675

Download citation

Keywords

  • Solid Electrolyte
  • Catalytic Rate
  • Catalyst Potential
  • Faradaic Efficiency
  • Catalyst Electrode