Advertisement

Journal of tissue culture methods

, Volume 15, Issue 3, pp 139–145 | Cite as

The study of representative populations of native aggrecan aggregates synthesized by human chondrocytes in vitro

  • M. Cornelissen
  • G. Verbruggen
  • A. M. Malfait
  • E. M. Veys
  • C. Broddelez
  • L. De Ridder
Article

Summary

Chondrocytes were cultured in gelified agarose. Aggrecans, accumulated during culture, were liberated by agarase digestion of the artificial agarose matrix and studied by electron microscopy. The culture system and the specific method used to liberate the extracellular macromolecules enabled us to study the whole population of de novo synthesized, native aggrecan aggregates. The average length of the aggrecans was 188 nm. Aggrecans were observed as free molecules or attached on hyaluronan chains. In these aggregates no free binding sites on the hyaluronan chain were observed, and the average distance between the aggrecans was 27 nm. Consequently, the length of the hyaluronan chain defines the molecular size of the aggregate. Mature human articular cartilage cells were found to synthesize a relatively small proportion of very large aggrecan aggregates with over 100 aggrecans attached to a single hyaluronan chain. However, the average aggrecan aggregate carried about 12 aggrecans.

Key words

aggrecans electron microscopy articular cartilage chondrocytes in vitro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayliss, M. T. Proteoglycan structure in normal and osteoarthritic human cartilage. In: Kuettner K. E.; Schleyerbach, R.; Hascall, V. C., eds. Articular cartilage biochemistry. New York: Raven Press; 1986:295–308.Google Scholar
  2. Benya, P. D.; Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224; 1982.CrossRefPubMedGoogle Scholar
  3. Brandt, K. D.; Muir, H. Characterisation of protein-polysaccharides of articular cartilage from mature and immature pigs. Biochem. J. 114:871–876; 1969.PubMedGoogle Scholar
  4. Buckwalter, J. A.; Rosenberg, L. C. Electron microscopic studies of cartilage proteoglycans. J. Biol. Chem. 257:9830–9839; 1982.PubMedGoogle Scholar
  5. Buckwalter, J. A.; Rosenberg, L. C.; Tang, L. H. The effect of link protein on proteoglycan aggregate structure. J. Biol. Chem. 259:5361–5363; 1984.PubMedGoogle Scholar
  6. Buckwalter, J. A.; Kuettner, K. E.; Thonar, E. J-M. Age-related changes in articular cartilage proteoglycans: electron microscopic studies. J. Orthop. Res. 3:251–257; 1985.CrossRefPubMedGoogle Scholar
  7. Buckwalter, J. A.; Roughley, P. J. Age related changes in human articular cartilage proteoglycans. In: Transactions 33th Annual Meeting of the Orthopedic Research Society. 12:125; 1987.Google Scholar
  8. Delbruck, A.; Dressow, B.; Gurr, E., et al. In vitro culture of human chondrocytes from adult subjects. Connect. Tiss. Res. 15:155–172; 1985.Google Scholar
  9. Faltz, L. L.; Reddi, A. H.; Hascall, G. K., et al. Characteristics of proteoglycans extracted from the swarm rat chondrosarcoma with associative solvents. J. Biol. Chem. 250:1375–1380; 1972.Google Scholar
  10. Front, P.; Dauguet, C.; Mitrovic, D. R. Effect of cytochrome C concentration on the ultrastructural appearance of bovine nasal cartilage proteoglycans. Stain Technol. 64:113–119; 1989.PubMedGoogle Scholar
  11. Kimura, J. H.; Osdoby, P.; Caplan, A. I., et al. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J. Biol. Chem. 253:4721–4729; 1978.PubMedGoogle Scholar
  12. Kleinschmidt, A. K.; Zahn, R. K. Uber desoxyribonucleinsaure-molekulen in protein-mischfilmen. Z. Naturforsch. 146:770–779; 1959.Google Scholar
  13. Manicourt, D. H.; Pita, J. C.; Pezon, C. F., et al. Characterization of the proteoglycans recovered under nondissociative conditions from normal articular cartilage of rabbits and dogs. J. Biol. Chem. 261:5426–5439; 1986.PubMedGoogle Scholar
  14. Rosenberg, L.; Hellman, W.; Kleinschmidt, A. K. Macromolecular models of proteinpolysaccharides from bovine nasal cartilage based on electron microscopic studies. J. Biol. Chem. 245:4123–4130; 1970.PubMedGoogle Scholar
  15. Rosenberg, L.; Hellmann, W.; Kleinschmidt, A. K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J. Biol. Chem. 250:1877–1883; 1975.PubMedGoogle Scholar
  16. Thyberg, J.; Lohmander, S.; Heinegard, D. Electron-microscopic studies on isolated molecules. Biochem. J. 151:157–166; 1975.PubMedGoogle Scholar
  17. Verbruggen, G.; Veys, E. M.; Wieme, N., et al. The synthesis and immobilisation of cartilage-specific proteoglycan by human chondrocytes in different concentrations of agarose. Clin. Exp. Rheumatol. 8:371–378; 1990.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1993

Authors and Affiliations

  • M. Cornelissen
    • 1
  • G. Verbruggen
    • 2
  • A. M. Malfait
    • 2
  • E. M. Veys
    • 2
  • C. Broddelez
    • 2
  • L. De Ridder
    • 1
  1. 1.Histology LaboratoryUniversity of GhentBelgium
  2. 2.Department of RheumatologyGhent University HospitalGhentBelgium

Personalised recommendations