Summary
The objectives of a number of methods of ordination are examined and a major distinction made between two approaches. The first of these has as a primary objective the efficient redescription of data, and is typified by principal components analysis. However the linear additive model implied in component analysis and the predominance of unique variance, together with lack of scale invariance suggests that other methods of dimensionality reduction might be more appropriate ecologically—either the non-metric methods of multidimensional scaling or the methods of factor analysis. The second approach, typified by Curtis and McIntosh continuum analysis, seeks to order the stands so that the resulting data matrix has a particular form, and is not directly concerned with dimensionality reduction. Continuum analysis is not the only such pathseeking method, and the objectives of several others are briefly examined. Finally the methods of Hill for seriation and the intrinsic dimensionality approach of Trunk seem to provide methods close to those required for the examination of ecological data. Concluding comments are made on problems of interpretation and the effects of sampling and description on the value of the results, especially in the light of the present tendency to employ simulated data to test the efficacy of methods of analysis.
Similar content being viewed by others
References
Anderson, A. J. B. 1971. Ordination methods in ecology. J. Ecol. 59: 713–726.
Austin, M. P. 1968. An ordination study of a chalk grassland community. J. Ecol. 56: 739–758.
Austin, M. P. & P. Greig-Smith. 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.
Austin, M. P. & I. Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two gradient models. J. Ecol. 59: 763–773.
Austin, M. P. & L. Orlóci. 1966. Geometric models in ecology. II. An evaluation of some ordination techniques. J. Ecol. 54: 217–227.
Bartlett, M. S. 1938. Methods of estimating mental factors. Nature 141: 609–610.
Bartlett, M. S. 1950. Tests of significance in factor analysis. Brit. J. Psychol. Statist. Sect. 3: 77–85.
Beals, E. W. 1960. Forest bird communities in the Apostle Islands of Wisconsin. Wilson Bull. 72: 156–181.
Bell, A. & M. R. Quillian. 1971. Capturing concepts in a semantic net. In: Jacks, E. L. (ed.). Associative Information Techniques pp. 3–26, Elsevier, New York.
Bennett, J. F. & W. L. Hays. 1960. Multidimensional unfolding: determining the dimensionality of ranked preference data. Psychometrika 25: 27–43.
Bennett, R. S. 1969. The intrinsic dimensionality of signal collections I.E.E.E. Trans. Information Theory. IT. 15: 517–525.
Benzécri, J. P. 1969. Statistical analysis as a tool to make patterns emerge from data. In: Watanabe, S. (ed.). Methodologies of Pattern Recognition, pp. 35–74, Academic Press, New York & London.
Beschel, R. E. & P. J. Webber. 1962. Gradient analysis in swamp forests. Nature 194: 207–209.
Blackith, R. E. & R. A. Reyment. 1971. Multivariate morphometrics. Academic Press London & New York. 412 pp.
Bray, J. R. & J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.
Browne, M. W. 1968. A comparison of factor analytic techniques. Psychometrika 33: 267–334.
Brunig, E. F. 1970. Stand structure, physiognomy and environmental factors in some lowland forests of Sarawak. Trop. Ecol. 11: 26–43.
Burroughs, G. E. R. & H. W. L. Miller. 1961. The rotation of principal components. Brit. J. Statist. Psychol. 14: 35–49.
Carroll, J. B. 1953. An analytical solution for approximating simple structure in factor analysis. Psychometrika 18: 23–38.
Carroll, J. B. 1957. Biquartimin criterion for rotating to oblique simple structure in factor analysis. Science 126: 1114–1115.
Carroll, J. D. & J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35: 283–319.
Cassie, R. M. & A. D. Michael. 1968. Fauna and sediments of an intertidal mudflat: a multivariate analysis. J. Exp. Mar. Biol. Ecol. 2: 1–25.
Cattell, R. B. 1952. Factor Analysis. Harper & Brothers, New York. 462 pp.
Cockayne, E. J. 1969. Computation of minimal length full Steiner trees on the vertices of a convex polygon. Mathem. Computation 23: 521–531.
Comrey, A. L. 1962. The minimum residual method of factor analysis. Psychol. Rep. 11: 15–18.
Coombs, C. H. & R. C. Kao. 1955. Nonmetric factor analysis. Bull. Dept. Engng. Res. 38, Ann Arbor, Michigan.
Cormack, R. M. 1971. A review of classification. J. Roy. Statist. Soc. Ser. A 134: 321–367.
Creasy, M. 1957. Analysis of variance as an alternative to factor analysis. J. Roy. Statist. Soc. B 19: 318–325.
Curtis, J. T. & R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.
Dagnelie, P. 1960. Contribution à l'étude des communautés végétales par l'analyse factorielle. Bull. Serv. Carte Phytogéogr. Sér. B 5, 7–71, 93–195.
Dale, M. B. 1964. The application of multivariate methods to heterogeneous data. Ph. D. Thesis, University of Southampton.
Delaney, M. J. 1965. Application of factor analysis to the study of variation in the long tailed field mouse (Apodemus sylvaticus (L.)) in north-west Scotland. Proc. Linn. Soc. London. 176: 103–111.
Farris, J. S., A. G. Ruge & M. M. Eckardt. 1970. A numerical approach to phylogenetic systematics. Syst. Zool. 19: 142–171.
Fukunaga, K. & D. R. Olsen. 1971. An algorithm for finding intrinsic dimensionality of data. I.E.E.E. Trans. Comput. C 70: 176–183.
Fuller, E. L. Jr. & W. J. Hemmerle. 1966. Robustness of the maximum-likelihood estimation procedure in factor analysis. Psychometrika 31: 255–266.
Gauch, H. & R. H. Whittaker. 1972. Sampling and ordination characteristics of computer simulated individualistic communities. Ecology 53: 446–453.
Gelfand, A. E. 1971. Rapid seriation methods with archaeological applications. In: Hodson, F. R., D. G. Kendall & P. Tautu (eds.). Mathematics in the Archaeological and Historical Sciences, p. 186–201, Edinburgh University Press, Edinburgh.
Gerardi, L. A. & J. Flamant. 1969. Geometrical pattern feature extraction by projection on Haar orthonormal basis. In: Walker, D. E. & L. M. Norton. (ed.). Proc. Int. Jt. Conf. Artificial Intelligence, p. 65–77, Washington.
Gilbert, N. 1963. Non-additive combining abilities. Genetic Res. Camb. 4: 65–73.
Gilbert, N. & T. C. E. Wells. 1966. The analysis of quadrat data. J. Ecol. 54: 675–685.
Gimingham, C. N. 1961. Northern European heath communities: a network of variation. J. Ecol. 49: 655–694.
Gittins, R. 1965. Multivariate approach to a limestone grassland community. J. Ecol. 53: 385–401, 403–409, 411–425.
Goff, F. G. 1968. Use of size stratification and differential weighting to measure forest trends. Amer. Midl. Nat. 79: 402–418.
Goff, F. G. & P. H. Zedler. 1968. Structural gradient analysis of upland forests in the western Great Lakes area. Ecol. Monogr. 38: 65–86.
Goff, F. G. & P. H. Zedler. 1972. Derivation of species succession vectors. Amer. Midl. Nat. 87: 397–412.
Golub, G. H. 1969. Matrix decomposition and statistical calculations. In: Milton, R. C. and J. A. Nedler. (ed.). Statistical Computation, p. 365–397, Academic Press, New York & London.
Goodall, D. W. 1954. Objective methods in the classification of vegetation. III. An essay in the use of factor analysis. Austral. J. Bot. 2: 304–324.
Goodall, D. W. 1961. Objective methods in the classification of vegetation. IV. Pattern and minimal area. Austral. J. Bot. 9: 162–196.
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.
Gower, J. C. 1972. A note on multiplicative analysis of variance models. (Unpublished.)
Gower, J. C. & G. S. Ross. 1969. Minimum spanning trees and single link cluster analysis. Appl. Satist. 18: 47–54.
Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. N.S. 16: 293–316.
Greig-Smith, P., M. P. Austin & T. C. Whitmore. 1967. The application of quantitative methods to vegetation survey. I. Association analysis and principal component ordination of rain forest. J. Ecol. 55: 483–503.
Groenewoud, H. van. 1965. Ordination and classification of some Swiss and Canadian forests by various biometric and other methods. Ber. Geobot. Inst. Rübel, Zürich. 36: 28–102.
Guttman, L. L. 1950. The principal components of scale analysis. In: S. A. Stouffer et al. (eds.). Measurement and Prediction, p. 312–361. Princeton University Press, Princeton N.J.
Guttman, L. L. 1953. Image theory for the structure of quantitative variates. Psychometrika 18: 277–296.
Guttman, L. L. 1955a. The determinancy of factor score matrices with implications for five other basic problems of common factor theory. Brit. J. Statist. Psychol. 8: 85–81.
Guttman, L. L. 1955b. A generalized simplex for factor analysis. Psychometrika 20: 173–192.
Guttman, L. L. 1956. ‘Best possible’ systematic estimates of communalities. Psychometrika 21: 273–285.
Guttman, L. L. 1957. Successive approximation for communalities. Research Rep. 12, Univ. of California, Berkeley.
Guttman, L. L. 1968. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33: 469–506.
Harman, H. H. 1967. Modern Factor Analysis. Chicago University Press. 474 pp.
Harman, H. H. & W. H. Jones. 1966. Factor analysis by minimizing residuals (Minres). Psychometrika 31: 351–368.
Harris, C. W. 1962. Some Rao-Gutman relationships. Psychometrika 27: 247–264.
Harris, C. W. 1967. On factors and factor scores. Psychometrika 32: 363–379.
Hathaway, W. H. 1971. Contingency table analysis of rain forest vegetation. In: Patil, G. P., E. C. Pielou & W. E. Waters (ed.). Statistical Ecology, III. Many species populations ecosystems and systems analysis, p. 271–314, Pennsylvania State University Press.
Heerman, E. F. 1963. Univocal or orthogonal estimators of orthogonal factors. Psychometrika 28: 161–172.
Hendrikson, A. A. & P. O. White. 1964. PROMAX: a quick method for rotation to oblique, simple structure. Brit. J. Statist. Psychol. 17: 65–70.
Henley, S. 1972. Geochemical applications of linear programming. Record 1972/82 Bureau of Mineral Resources, Geology and Geophysics Department of National Development, Commonwealth of Australia. 24 pp.
Hill, M. O. 1973a. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.
Hill, M. O. 1973b. Reciprocal averaging, Seriation and Sociological Structure (Unpublished).
Hodson, F. R., P. H. A. Sneath & J. E. Doran. 1966. Some experiments on the numerical analysis of archaeological data. Biometrika 53: 311–324.
Hole, F. & M. Shaw. 1967. Computer analysis of chronological seriation. Rice University Studies. 53: 1–166.
Hopkins, B. 1957. Pattern in the lant community. J. Ecol. 45: 451–463.
Horst, P. 1965. Factor Analysis of Data Matrices. Holt, Rinehart & Wilson, New York 730 pp.
Hotelling, H. 1933. Analysis of a complex of variables into principal components. J. Educ. Psychol. 24: 417–441, 498–520.
Ivimey-Cook, R. & M. C. F. Proctor. 1967. Factor analysis of data from an East Devon heath: a comparison of principal component and rotated solutions. J. Ecol. 55: 405–419.
Ivimey-Cook, R., M. C. F. Proctor & D. L. Wigston. 1969. On the problem of ‘R/Q’ terminology in multivariate analysis of biological data. J. Ecol. 57: 673–676.
Jardine, N. & R. Sibson. 1971. Mathematical Taxonomy. J. Wiley. London. 286 pp.
Jeglun, J. K., C. F. Wehrhahn & J. M. A. Swan. 1971. Comparisons of environmental ordinations with principal component vegetation ordination for sets of data having different degrees of complexity. Can. J. For. Res. 1: 99–112.
Jenkins, G. M. & D. G. Watts. 1968. Spectral Analysis and its Applications. Holden Day, San Francisco. 525 pp.
Jennrich, R. I. & P. F. Sampson. 1966. Rotation for simple loadings. Psychometrika 31: 313–323.
Jöreskog, K. G. 1967. UMLFA. A program for unrestricted maximum likelihood factor analysis. RM-66-20. Educational Testing Service, Princeton, N.J.
Jöreskog, K. G. 1970. A general method for analysis of covariance structures. Biometrika 57: 239–251.
Jöreskog, K. G. & G. Gruvaeus. 1967. RMLFA. A program for restricted maximum likelihood factor analysis. RM-67-21. Educational Testing Service, Princeton, N.J.
Jöreskog, K. G. & D. N. Lawley. 1968. New methods in maximum likelihood factor analysis. Brit. J. Math. Statist. Psychol. 21: 85–96.
Kaiser, H. F. 1958. The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200.
Kaiser, H. F. 1959. A note on the Tryon-Kaiser solution for communalities. Psychometrika 24: 269–271.
Kaiser, H. F. & J. Caffrey. 1956. Alpha factor analysis. Psychometrika 30: 1–14.
Kaiser, H. F. & K. W. Dickman. 1959. Analytic determination of common factors. (Unpublished.)
Kendall, D. G. 1971. Seriation of abundance matrices. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 215–252. Edinburgh University Press, Edinburgh.
Kendall, M. G. 1957. A course in multivariate analysis. Griffin, London. 185 pp.
Kendall, M. G. & A. Stuart. 1963. The Advanced Theory of Statistics. Griffin, London. 3 Vols, 433, 690, 552 pp.
Knight, D. L. & O. L. Loucks. 1969. A quantitative analysis of Wisconsin forest vegetation on the basis of plant function and gross morphology. Ecology 50: 219–234.
Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27, 115–129.
Kruskal, J. B. 1971. Multidimensional scaling in archeology: time is not the only dimension. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences. p. 119–132, Edinburgh University Press, Edinburgh.
Kruskal, J. B. & J. D. Carroll. 1969. Geometrical models and badness-of-fit functions. In: Krishnaiah, P. (ed.). Multivariate Analysis, 2, p. 639–671. Academic Press, New York.
Lambert, J. M. & M. B. Dale. 1964. The use of statistics in phytosociology. Adv. Ecol. Res. 2: 59–99.
Lange, R. T. 1968. Influence analysis in vegetation. Austral. J. Bot. 16: 555–564.
Lawley, D. N. 1940. The estimation of factor loadings by the method of maximum likelihood. Proc. Roy. Sec. Edin. Ser. A 60: 64–82.
Ledermann, W. 1939. A shortened method of estimation of mental factors by regression. Psychometrika 4: 109–116.
Lieth, H. & G. W. Moore. 1970. Computerized clustering of species in phytosociological tables and its utilization in field work. In: Patil, G. P., E. C. Pielou & W. E. Waters. (ed.). Statistical Ecology I, Spatial Patterns and Statistical Distributions. pp. 403–422, Pennsylvania State University Press, London.
Lin, S. 1965. Computer solution of the travelling salesman problem. Bell System Tech. J. 44: 2245–2269.
Loucks, O. L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.
Maarel, E. van der. 1969. On the use of ordination methods in phytosociology. Vegetatio 19: 21–46.
Macnaughton-Smith, P. 1965. Some statistical and other numerical techniques for classifying individuals. Home Office Research Unit Rep. 6. H.M.S.O.
Marshall, A. W. & I. Olkin. 1968. Scaling matrices to achieve specified row and column sums. Numer. Mathem. 12: 83–90.
McCammon, R. B. 1966. Minimum entropy rotation program. J. Geol. 74: 721–733.
McCammon, R. B. 1968. Multiple Component Analysis and its application to the reclassification of environments. Bull. Amer. Ass. Petrol. Geol. 52: 2178–2196.
McDonald, R. P. 1962. A general approach to nonlinear factor analysis. Psychometrika. 27: 397–418.
McDonald, R. P. 1967a. Factor interaction in nonlinear factor analysis. Brit. J. Math. Statist. Psychol. 20: 205–218.
McDonald, R. P. 1967b. Numerical methods for polynomial methods in nonlinear factor analysis. Psychometrika 32: 77–112.
McDonald, R. P. 1969a. A generalized common factor analysis based on residual covariance matrices of prescribed structure. Brit. J. Math. Statist. Psychol. 22: 149–163.
McDonald, R. P. 1969b. The common factor analysis of multicategory data. Brit. J. Math. Statist. Psychol. 22: 165–174.
McDonald, R. P. & E. J. Burr. 1967. A comparison of four methods of constructing factor scores. Psychometrika 32: 381–401.
McIntosh, R. P. 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.
Mead, R. 1971. A note on the use and misuse of regression models in ecology. J. Ecol. 59: 215–220.
Naouri, J. C. 1970. Analyse factorielle des correspondance continus. Publ. Inst. Statist. Univ. Paris. 19: 1–100.
Neuhaus, J. & C. Wrigley. 1954. The Quartimax method: An analytic approach to orthogonal simple structure. Brit. J. Statist. Psychol. 7: 81–91.
Noy-Meir, I. 1970. Component analysis of semi-arid vegetation in South-eastern Australia. Ph. D. Thesis. Australian National University.
Noy-Meir, I. 1971a. Multivariate analysis of desert vegetation. II. Qual./Quant. partition of heterogeneity. Israel J. Bot. 20: 20–21.
Noy-Meir, I. 1971b. Multivariate analysis of the semi-arid vegetation in south-eastern Australia: Nodal ordination by component analysis. Proc. Ecol. Soc. Austral. 6: 159–193.
Noy-Meir, I. & D. J. Anderson. 1970. Multiple pattern analysis or multiscale ordination: pathway to a vegetation hologram. In: Patil, G. P., E. C. Pielou & W. E. Waters (ed.). Statistical Ecology III. Many species populations, ecosystems and systems analysis, p. 207–232. Pennsylvania State Univ. Press, London.
Noy-Meir, I. & M. P. Austin. 1970. Principal component ordination and simulated vegetation data. Ecology 57: 551–552.
Orlóci, L. 1966. Geometric models in ecology. 1. The theory and application of some ordination methods. J. Ecol. 54:193–215.
Orlóci, L. 1967. Data centering: a review and evaluation with reference to principal component analysis. Syst. Zool. 16: 208–212.
Orlóci, L. 1973. Ordination by resemblance matrices. In: R. H. Whittaker (ed.). Handbook of Vegetation Science. Part. V. Classification and ordination of communities, p. 251–286, W. Junk, The Hague.
Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Phil. Mag. 6: 559–572.
Petrie, W. M. F. 1899. Sequence in prehistoric remains. J. Anthropol. Inst. 29: 295–301.
Pielou, E. C. 1962. Runs of one species with respect to another in transects through plant populations. Biometrics 19: 450–459.
Pielou, E. C. 1964. The spatial pattern of two-phase patchworks of vegetation. Biometrics 20: 156–167.
Pielou, E. C. 1967. A test for random mingling of the phases of a mosaic. Biometrics 23: 657–670.
Pinzka, C. & D. R. Saunders. 1954. Analytic rotation to simple structure. II. Extension to an oblique solution. Research Bull. RB-54-31. Educational Testing Service, Princeton, N.J.
Prim, R. C. 1957. Shortest connection matrix network and some generalizations. Bell System Tech. J. 36: 1389–1401.
Ramensky, L. G. 1930. Zur Methodik der vergleichenden Bearbeitung und Ordnung von Pflanzenlisten und andere Objecten, die durch mehrere, verschiedenartig wirkende Factoren bestimmt werden. Beitr. Biol. Pflanzen. 18: 269–304.
Rao, C. R. 1955. Estimation and tests of significance in factor analysis. Psychometrika 20: 93–111.
Rippe, D. D. 1953. Application of a large sampling criterion to some sampling problems in factor analysis. Psychometrika 18: 191–205.
Rochow, J. J. 1972. A vegetational description of a mid-Missouri forest using gradient analysis techniques. Amer. Midl. Nat. 87: 377–396.
Rosenfeld, A. 1969. Picture Processing by Computer. Academic Press, New York. 132 pp.
Sammon, J. W. Jr. 1969. A nonlinear mapping for data structure. I.E.E.E. Trans. Computers, C-18: 401–409.
Saunders, D. R. 1950. Practical methods of direct factor analysis of score matrices. Ph. D. Thesis, University of Illinois.
Saunders, D. R. 1953. An analytic method of rotation to orthogonal simple structure. Research Bull. 53–10. Educational Testing Service, Princeton, N. J.
Schönemann, P. H. & R. M. Carroll. 1970. Fitting one matrix to another under choice of central dilation and a rigid rotation. Psychometrika 35: 245–255.
Seal, H. 1964. Multivariate Statistical Methods for Biologists. Methuen, London. 209 pp.
Searle, N. H. 1969. Shape analysis using Walsh functions. In: Meltzer, B. & D. Michie. (ed.), Machine Intelligence 5. p. 395–409. Edinburgh University Press, Edinburgh.
Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27: 125–240, 219–246.
Shepard, N. H. & J. D. Carroll. 1965. Parametric representation of nonlinear data structures. In: Krishnaiah, P. R. (ed.). Multivariate Analysis, p. 561–592, Academic Press, N.Y. & London.
Sherman, C. R. 1972. Nonmetric multi-dimensional scaling: a Monte Carlo study of the basic parameter. Psychometrika 37: 325–355.
Sibson, R. 1971. Some thoughts on sequencing methods. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 255–266. Edinburgh University Press, Edinburgh.
Sibson, R. 1972. Order invariant methods for data analysis. J. Roy. Statist. Soc. B. 34: 311–349.
Siegel, S. 1956. Nonparametric statistics for the behavioural sciences. McGraw-Hill, New York, 312 pp.
Sobolev, L. N. 1971. Distinguishing of primary topological units of vegetation employing the methods of L. G. Ramenski. In: Aleksandrova, V. D. (ed.), Methods for Distinguishing Plant Associations, p. 28–35. Acad. Sci. USSR.
Sokal, R. R. 1958. Thurstone's analytical method for simple structure and a mass modification thereof. Psychometrika 23: 237–257.
Sneath, P. H. A. 1966. A method of curve seeking from scattered points. Comput. J. 8: 383–391.
Swan, J. M. A. 1970. An examination of some ordination problems by the use of simulated vegetational data. Ecology 51: 89–102.
Swan, J. M. A., R. L. Dix & C. F. Wehrhahn. 1969. An ordination technique based on the best possible stand defined axes and its application to vegetational analysis. Ecology 50: 206–212.
Tallis, J. H. 1969. The blanket bog vegetation of the Berwyn mountains, North Wales. J. Ecol. 57: 765–788.
Thurstone, L. L. 1935. Vectors of the Mind. University of Chicago Press. Chicago. 266 pp.
Thurstone, L. L. 1938. A new rotational method. Psychometrika 3: 199–218.
Thurstone, L. L. 1947. Multiple Factor Analysis. University of Chicago Press, Chicago. 535 pp.
Toomey, D. F. 1966. Application of factor analysis to a facies study of the Leavenworth Lanston Pennsylvanian Virgilian of Kansas and environs. Univ. Kansas Geol. Surv. S. Distr. Publ. No. 27.
Tryon, R. C. & D. E. Bailey. 1970. Cluster Analysis. McGraw-Hill, N.Y. 204 pp.
Trunk, G. V. 1968. Statistical estimation of the intrinsic dimensionality of data collections. Inform. Cont. 12: 508–525.
Trunk, G. V. 1972. Parameter identification using intrinsic dimension ality. I.E.E.E. Trans. Information Theory. II-18. 126–133.
Tucker, L. R. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279–311.
Tversky, A. & D. Krantz. 1969. The dimensional representation and the metric structure of similarity data. Michigan Mathematical Psychology Program Tech. Rep. 69-7, Ann Arbor, Michigan.
Vries, D. M. de. 1953. Objective combinations of species. Acta Bot. Neerl. 1: 497–499.
Watanabe, S. 1967. Karhunen-Loeve expansion and factor analysis. Trans. 4th Prague Conference on Information Theory 1965, p. 635–660, Czechoslovak Acad. Science, Prague.
Whittaker, R. H. 1952. A study of summer foliage insect communities in the Great Smokey Mountains. Ecol. Monogr. 22: 1–44.
Whittaker, R. H. 1956. The vegetation of the Great Smokey Mountains. Ecol. Monogr. 26: 1–80.
Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 201–264.
Whittaker, R. H. (ed.). 1973. Handbook of Vegetation Science. Part V. Ordination and Classification of Communities, Junk, The Hague. 737 pp.
Williams, E. J. 1952. Use of scores for the analysis of association in contingency tables. Biometrika 39: 274–289.
Williams, W. T. & M. B. Dale. 1965. Fundamental problems in numerical taxonomy. Adv. Bot. Res. 2: 35–68.
Williams, W. T., M. B. Dale & G. N. Lance. 1971. Two outstanding ordination problems. Austral. J. Bot. 19: 251–258.
Williams, W. T., G. N. Lance, L. J. Webb, J. G. Tracey & J. H. Connell. 1969. Studies in the numerical analysis of complex rain forest communities. IV. A method for the elucidation of small-scale forest pattern. J. Ecol. 57: 635–654.
Wilkinson, E. M. 1971. Archaeological seriation and the travelling salesman problem. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 276–284, Edinburgh University Press, Edinburgh.
Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, London. 662 pp.
Wilson, E. & J. Worcester. 1939. Resolution of six tests into three general factors. Proc. Nat. Acad. Sci. (U.S.A.) 25: 73–77.
Wood, K. R., R. L. McCornack & L. T. Villone. 1964. Nonlinear factor analysis program A-78A. Tech. Memo. 1764. Systems Development Corp., Santa Monica, California.
Yarranton, G. A. 1967. Principal components analysis of data for saxicolous bryophyte vegetation at Steps Bridge, Devon. Can. J. Bot. 45: 93–118, 229–247.
Yarranton, G. A. 1969. Plant ecology: a unifying model. J. Ecol. 57: 245–250.
Young, G. & C. Eckart. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1: 211–218.
Zólyomi, B. & I. Précsényi. 1964. Methode zur Ökologischen Charakterisierung der Vegetations einheiten und zum Vergleich der Standorts. Acta Bot. Acad. Sci. Hung. 10: 377–416.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dale, M.B. On objectives of methods of ordination. Plant Ecol 30, 15–32 (1975). https://doi.org/10.1007/BF02387874
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02387874