Skip to main content
Log in

On objectives of methods of ordination

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

The objectives of a number of methods of ordination are examined and a major distinction made between two approaches. The first of these has as a primary objective the efficient redescription of data, and is typified by principal components analysis. However the linear additive model implied in component analysis and the predominance of unique variance, together with lack of scale invariance suggests that other methods of dimensionality reduction might be more appropriate ecologically—either the non-metric methods of multidimensional scaling or the methods of factor analysis. The second approach, typified by Curtis and McIntosh continuum analysis, seeks to order the stands so that the resulting data matrix has a particular form, and is not directly concerned with dimensionality reduction. Continuum analysis is not the only such pathseeking method, and the objectives of several others are briefly examined. Finally the methods of Hill for seriation and the intrinsic dimensionality approach of Trunk seem to provide methods close to those required for the examination of ecological data. Concluding comments are made on problems of interpretation and the effects of sampling and description on the value of the results, especially in the light of the present tendency to employ simulated data to test the efficacy of methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. J. B. 1971. Ordination methods in ecology. J. Ecol. 59: 713–726.

    Google Scholar 

  • Austin, M. P. 1968. An ordination study of a chalk grassland community. J. Ecol. 56: 739–758.

    Google Scholar 

  • Austin, M. P. & P. Greig-Smith. 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.

    Google Scholar 

  • Austin, M. P. & I. Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Austin, M. P. & L. Orlóci. 1966. Geometric models in ecology. II. An evaluation of some ordination techniques. J. Ecol. 54: 217–227.

    Google Scholar 

  • Bartlett, M. S. 1938. Methods of estimating mental factors. Nature 141: 609–610.

    Google Scholar 

  • Bartlett, M. S. 1950. Tests of significance in factor analysis. Brit. J. Psychol. Statist. Sect. 3: 77–85.

    Google Scholar 

  • Beals, E. W. 1960. Forest bird communities in the Apostle Islands of Wisconsin. Wilson Bull. 72: 156–181.

    Google Scholar 

  • Bell, A. & M. R. Quillian. 1971. Capturing concepts in a semantic net. In: Jacks, E. L. (ed.). Associative Information Techniques pp. 3–26, Elsevier, New York.

    Google Scholar 

  • Bennett, J. F. & W. L. Hays. 1960. Multidimensional unfolding: determining the dimensionality of ranked preference data. Psychometrika 25: 27–43.

    Article  Google Scholar 

  • Bennett, R. S. 1969. The intrinsic dimensionality of signal collections I.E.E.E. Trans. Information Theory. IT. 15: 517–525.

    Google Scholar 

  • Benzécri, J. P. 1969. Statistical analysis as a tool to make patterns emerge from data. In: Watanabe, S. (ed.). Methodologies of Pattern Recognition, pp. 35–74, Academic Press, New York & London.

    Google Scholar 

  • Beschel, R. E. & P. J. Webber. 1962. Gradient analysis in swamp forests. Nature 194: 207–209.

    Google Scholar 

  • Blackith, R. E. & R. A. Reyment. 1971. Multivariate morphometrics. Academic Press London & New York. 412 pp.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Browne, M. W. 1968. A comparison of factor analytic techniques. Psychometrika 33: 267–334.

    PubMed  CAS  Google Scholar 

  • Brunig, E. F. 1970. Stand structure, physiognomy and environmental factors in some lowland forests of Sarawak. Trop. Ecol. 11: 26–43.

    Google Scholar 

  • Burroughs, G. E. R. & H. W. L. Miller. 1961. The rotation of principal components. Brit. J. Statist. Psychol. 14: 35–49.

    Google Scholar 

  • Carroll, J. B. 1953. An analytical solution for approximating simple structure in factor analysis. Psychometrika 18: 23–38.

    Article  Google Scholar 

  • Carroll, J. B. 1957. Biquartimin criterion for rotating to oblique simple structure in factor analysis. Science 126: 1114–1115.

    Google Scholar 

  • Carroll, J. D. & J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35: 283–319.

    Article  Google Scholar 

  • Cassie, R. M. & A. D. Michael. 1968. Fauna and sediments of an intertidal mudflat: a multivariate analysis. J. Exp. Mar. Biol. Ecol. 2: 1–25.

    Article  Google Scholar 

  • Cattell, R. B. 1952. Factor Analysis. Harper & Brothers, New York. 462 pp.

    Google Scholar 

  • Cockayne, E. J. 1969. Computation of minimal length full Steiner trees on the vertices of a convex polygon. Mathem. Computation 23: 521–531.

    Google Scholar 

  • Comrey, A. L. 1962. The minimum residual method of factor analysis. Psychol. Rep. 11: 15–18.

    Google Scholar 

  • Coombs, C. H. & R. C. Kao. 1955. Nonmetric factor analysis. Bull. Dept. Engng. Res. 38, Ann Arbor, Michigan.

  • Cormack, R. M. 1971. A review of classification. J. Roy. Statist. Soc. Ser. A 134: 321–367.

    Google Scholar 

  • Creasy, M. 1957. Analysis of variance as an alternative to factor analysis. J. Roy. Statist. Soc. B 19: 318–325.

    Google Scholar 

  • Curtis, J. T. & R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.

    Google Scholar 

  • Dagnelie, P. 1960. Contribution à l'étude des communautés végétales par l'analyse factorielle. Bull. Serv. Carte Phytogéogr. Sér. B 5, 7–71, 93–195.

    Google Scholar 

  • Dale, M. B. 1964. The application of multivariate methods to heterogeneous data. Ph. D. Thesis, University of Southampton.

  • Delaney, M. J. 1965. Application of factor analysis to the study of variation in the long tailed field mouse (Apodemus sylvaticus (L.)) in north-west Scotland. Proc. Linn. Soc. London. 176: 103–111.

    Google Scholar 

  • Farris, J. S., A. G. Ruge & M. M. Eckardt. 1970. A numerical approach to phylogenetic systematics. Syst. Zool. 19: 142–171.

    Google Scholar 

  • Fukunaga, K. & D. R. Olsen. 1971. An algorithm for finding intrinsic dimensionality of data. I.E.E.E. Trans. Comput. C 70: 176–183.

    Google Scholar 

  • Fuller, E. L. Jr. & W. J. Hemmerle. 1966. Robustness of the maximum-likelihood estimation procedure in factor analysis. Psychometrika 31: 255–266.

    Article  PubMed  Google Scholar 

  • Gauch, H. & R. H. Whittaker. 1972. Sampling and ordination characteristics of computer simulated individualistic communities. Ecology 53: 446–453.

    Google Scholar 

  • Gelfand, A. E. 1971. Rapid seriation methods with archaeological applications. In: Hodson, F. R., D. G. Kendall & P. Tautu (eds.). Mathematics in the Archaeological and Historical Sciences, p. 186–201, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Gerardi, L. A. & J. Flamant. 1969. Geometrical pattern feature extraction by projection on Haar orthonormal basis. In: Walker, D. E. & L. M. Norton. (ed.). Proc. Int. Jt. Conf. Artificial Intelligence, p. 65–77, Washington.

  • Gilbert, N. 1963. Non-additive combining abilities. Genetic Res. Camb. 4: 65–73.

    Google Scholar 

  • Gilbert, N. & T. C. E. Wells. 1966. The analysis of quadrat data. J. Ecol. 54: 675–685.

    Google Scholar 

  • Gimingham, C. N. 1961. Northern European heath communities: a network of variation. J. Ecol. 49: 655–694.

    Google Scholar 

  • Gittins, R. 1965. Multivariate approach to a limestone grassland community. J. Ecol. 53: 385–401, 403–409, 411–425.

    Google Scholar 

  • Goff, F. G. 1968. Use of size stratification and differential weighting to measure forest trends. Amer. Midl. Nat. 79: 402–418.

    Google Scholar 

  • Goff, F. G. & P. H. Zedler. 1968. Structural gradient analysis of upland forests in the western Great Lakes area. Ecol. Monogr. 38: 65–86.

    Google Scholar 

  • Goff, F. G. & P. H. Zedler. 1972. Derivation of species succession vectors. Amer. Midl. Nat. 87: 397–412.

    Google Scholar 

  • Golub, G. H. 1969. Matrix decomposition and statistical calculations. In: Milton, R. C. and J. A. Nedler. (ed.). Statistical Computation, p. 365–397, Academic Press, New York & London.

    Google Scholar 

  • Goodall, D. W. 1954. Objective methods in the classification of vegetation. III. An essay in the use of factor analysis. Austral. J. Bot. 2: 304–324.

    Google Scholar 

  • Goodall, D. W. 1961. Objective methods in the classification of vegetation. IV. Pattern and minimal area. Austral. J. Bot. 9: 162–196.

    Google Scholar 

  • Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Gower, J. C. 1972. A note on multiplicative analysis of variance models. (Unpublished.)

  • Gower, J. C. & G. S. Ross. 1969. Minimum spanning trees and single link cluster analysis. Appl. Satist. 18: 47–54.

    Google Scholar 

  • Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. N.S. 16: 293–316.

    Google Scholar 

  • Greig-Smith, P., M. P. Austin & T. C. Whitmore. 1967. The application of quantitative methods to vegetation survey. I. Association analysis and principal component ordination of rain forest. J. Ecol. 55: 483–503.

    Google Scholar 

  • Groenewoud, H. van. 1965. Ordination and classification of some Swiss and Canadian forests by various biometric and other methods. Ber. Geobot. Inst. Rübel, Zürich. 36: 28–102.

    Google Scholar 

  • Guttman, L. L. 1950. The principal components of scale analysis. In: S. A. Stouffer et al. (eds.). Measurement and Prediction, p. 312–361. Princeton University Press, Princeton N.J.

    Google Scholar 

  • Guttman, L. L. 1953. Image theory for the structure of quantitative variates. Psychometrika 18: 277–296.

    Google Scholar 

  • Guttman, L. L. 1955a. The determinancy of factor score matrices with implications for five other basic problems of common factor theory. Brit. J. Statist. Psychol. 8: 85–81.

    Google Scholar 

  • Guttman, L. L. 1955b. A generalized simplex for factor analysis. Psychometrika 20: 173–192.

    Google Scholar 

  • Guttman, L. L. 1956. ‘Best possible’ systematic estimates of communalities. Psychometrika 21: 273–285.

    Article  Google Scholar 

  • Guttman, L. L. 1957. Successive approximation for communalities. Research Rep. 12, Univ. of California, Berkeley.

    Google Scholar 

  • Guttman, L. L. 1968. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33: 469–506.

    Article  Google Scholar 

  • Harman, H. H. 1967. Modern Factor Analysis. Chicago University Press. 474 pp.

  • Harman, H. H. & W. H. Jones. 1966. Factor analysis by minimizing residuals (Minres). Psychometrika 31: 351–368.

    PubMed  CAS  Google Scholar 

  • Harris, C. W. 1962. Some Rao-Gutman relationships. Psychometrika 27: 247–264.

    Article  Google Scholar 

  • Harris, C. W. 1967. On factors and factor scores. Psychometrika 32: 363–379.

    Article  Google Scholar 

  • Hathaway, W. H. 1971. Contingency table analysis of rain forest vegetation. In: Patil, G. P., E. C. Pielou & W. E. Waters (ed.). Statistical Ecology, III. Many species populations ecosystems and systems analysis, p. 271–314, Pennsylvania State University Press.

    Google Scholar 

  • Heerman, E. F. 1963. Univocal or orthogonal estimators of orthogonal factors. Psychometrika 28: 161–172.

    Google Scholar 

  • Hendrikson, A. A. & P. O. White. 1964. PROMAX: a quick method for rotation to oblique, simple structure. Brit. J. Statist. Psychol. 17: 65–70.

    Google Scholar 

  • Henley, S. 1972. Geochemical applications of linear programming. Record 1972/82 Bureau of Mineral Resources, Geology and Geophysics Department of National Development, Commonwealth of Australia. 24 pp.

  • Hill, M. O. 1973a. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Google Scholar 

  • Hill, M. O. 1973b. Reciprocal averaging, Seriation and Sociological Structure (Unpublished).

  • Hodson, F. R., P. H. A. Sneath & J. E. Doran. 1966. Some experiments on the numerical analysis of archaeological data. Biometrika 53: 311–324.

    Google Scholar 

  • Hole, F. & M. Shaw. 1967. Computer analysis of chronological seriation. Rice University Studies. 53: 1–166.

    Google Scholar 

  • Hopkins, B. 1957. Pattern in the lant community. J. Ecol. 45: 451–463.

    Google Scholar 

  • Horst, P. 1965. Factor Analysis of Data Matrices. Holt, Rinehart & Wilson, New York 730 pp.

    Google Scholar 

  • Hotelling, H. 1933. Analysis of a complex of variables into principal components. J. Educ. Psychol. 24: 417–441, 498–520.

    Google Scholar 

  • Ivimey-Cook, R. & M. C. F. Proctor. 1967. Factor analysis of data from an East Devon heath: a comparison of principal component and rotated solutions. J. Ecol. 55: 405–419.

    Google Scholar 

  • Ivimey-Cook, R., M. C. F. Proctor & D. L. Wigston. 1969. On the problem of ‘R/Q’ terminology in multivariate analysis of biological data. J. Ecol. 57: 673–676.

    Google Scholar 

  • Jardine, N. & R. Sibson. 1971. Mathematical Taxonomy. J. Wiley. London. 286 pp.

    Google Scholar 

  • Jeglun, J. K., C. F. Wehrhahn & J. M. A. Swan. 1971. Comparisons of environmental ordinations with principal component vegetation ordination for sets of data having different degrees of complexity. Can. J. For. Res. 1: 99–112.

    Google Scholar 

  • Jenkins, G. M. & D. G. Watts. 1968. Spectral Analysis and its Applications. Holden Day, San Francisco. 525 pp.

    Google Scholar 

  • Jennrich, R. I. & P. F. Sampson. 1966. Rotation for simple loadings. Psychometrika 31: 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Jöreskog, K. G. 1967. UMLFA. A program for unrestricted maximum likelihood factor analysis. RM-66-20. Educational Testing Service, Princeton, N.J.

    Google Scholar 

  • Jöreskog, K. G. 1970. A general method for analysis of covariance structures. Biometrika 57: 239–251.

    Google Scholar 

  • Jöreskog, K. G. & G. Gruvaeus. 1967. RMLFA. A program for restricted maximum likelihood factor analysis. RM-67-21. Educational Testing Service, Princeton, N.J.

    Google Scholar 

  • Jöreskog, K. G. & D. N. Lawley. 1968. New methods in maximum likelihood factor analysis. Brit. J. Math. Statist. Psychol. 21: 85–96.

    Google Scholar 

  • Kaiser, H. F. 1958. The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200.

    Article  Google Scholar 

  • Kaiser, H. F. 1959. A note on the Tryon-Kaiser solution for communalities. Psychometrika 24: 269–271.

    Article  Google Scholar 

  • Kaiser, H. F. & J. Caffrey. 1956. Alpha factor analysis. Psychometrika 30: 1–14.

    Google Scholar 

  • Kaiser, H. F. & K. W. Dickman. 1959. Analytic determination of common factors. (Unpublished.)

  • Kendall, D. G. 1971. Seriation of abundance matrices. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 215–252. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Kendall, M. G. 1957. A course in multivariate analysis. Griffin, London. 185 pp.

    Google Scholar 

  • Kendall, M. G. & A. Stuart. 1963. The Advanced Theory of Statistics. Griffin, London. 3 Vols, 433, 690, 552 pp.

    Google Scholar 

  • Knight, D. L. & O. L. Loucks. 1969. A quantitative analysis of Wisconsin forest vegetation on the basis of plant function and gross morphology. Ecology 50: 219–234.

    Google Scholar 

  • Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27, 115–129.

    Google Scholar 

  • Kruskal, J. B. 1971. Multidimensional scaling in archeology: time is not the only dimension. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences. p. 119–132, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Kruskal, J. B. & J. D. Carroll. 1969. Geometrical models and badness-of-fit functions. In: Krishnaiah, P. (ed.). Multivariate Analysis, 2, p. 639–671. Academic Press, New York.

    Google Scholar 

  • Lambert, J. M. & M. B. Dale. 1964. The use of statistics in phytosociology. Adv. Ecol. Res. 2: 59–99.

    Google Scholar 

  • Lange, R. T. 1968. Influence analysis in vegetation. Austral. J. Bot. 16: 555–564.

    Google Scholar 

  • Lawley, D. N. 1940. The estimation of factor loadings by the method of maximum likelihood. Proc. Roy. Sec. Edin. Ser. A 60: 64–82.

    Google Scholar 

  • Ledermann, W. 1939. A shortened method of estimation of mental factors by regression. Psychometrika 4: 109–116.

    Article  Google Scholar 

  • Lieth, H. & G. W. Moore. 1970. Computerized clustering of species in phytosociological tables and its utilization in field work. In: Patil, G. P., E. C. Pielou & W. E. Waters. (ed.). Statistical Ecology I, Spatial Patterns and Statistical Distributions. pp. 403–422, Pennsylvania State University Press, London.

    Google Scholar 

  • Lin, S. 1965. Computer solution of the travelling salesman problem. Bell System Tech. J. 44: 2245–2269.

    Google Scholar 

  • Loucks, O. L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Google Scholar 

  • Maarel, E. van der. 1969. On the use of ordination methods in phytosociology. Vegetatio 19: 21–46.

    Google Scholar 

  • Macnaughton-Smith, P. 1965. Some statistical and other numerical techniques for classifying individuals. Home Office Research Unit Rep. 6. H.M.S.O.

  • Marshall, A. W. & I. Olkin. 1968. Scaling matrices to achieve specified row and column sums. Numer. Mathem. 12: 83–90.

    Google Scholar 

  • McCammon, R. B. 1966. Minimum entropy rotation program. J. Geol. 74: 721–733.

    CAS  Google Scholar 

  • McCammon, R. B. 1968. Multiple Component Analysis and its application to the reclassification of environments. Bull. Amer. Ass. Petrol. Geol. 52: 2178–2196.

    Google Scholar 

  • McDonald, R. P. 1962. A general approach to nonlinear factor analysis. Psychometrika. 27: 397–418.

    Google Scholar 

  • McDonald, R. P. 1967a. Factor interaction in nonlinear factor analysis. Brit. J. Math. Statist. Psychol. 20: 205–218.

    CAS  Google Scholar 

  • McDonald, R. P. 1967b. Numerical methods for polynomial methods in nonlinear factor analysis. Psychometrika 32: 77–112.

    Google Scholar 

  • McDonald, R. P. 1969a. A generalized common factor analysis based on residual covariance matrices of prescribed structure. Brit. J. Math. Statist. Psychol. 22: 149–163.

    Google Scholar 

  • McDonald, R. P. 1969b. The common factor analysis of multicategory data. Brit. J. Math. Statist. Psychol. 22: 165–174.

    Google Scholar 

  • McDonald, R. P. & E. J. Burr. 1967. A comparison of four methods of constructing factor scores. Psychometrika 32: 381–401.

    Google Scholar 

  • McIntosh, R. P. 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.

    Google Scholar 

  • Mead, R. 1971. A note on the use and misuse of regression models in ecology. J. Ecol. 59: 215–220.

    Google Scholar 

  • Naouri, J. C. 1970. Analyse factorielle des correspondance continus. Publ. Inst. Statist. Univ. Paris. 19: 1–100.

    Google Scholar 

  • Neuhaus, J. & C. Wrigley. 1954. The Quartimax method: An analytic approach to orthogonal simple structure. Brit. J. Statist. Psychol. 7: 81–91.

    Google Scholar 

  • Noy-Meir, I. 1970. Component analysis of semi-arid vegetation in South-eastern Australia. Ph. D. Thesis. Australian National University.

  • Noy-Meir, I. 1971a. Multivariate analysis of desert vegetation. II. Qual./Quant. partition of heterogeneity. Israel J. Bot. 20: 20–21.

    Google Scholar 

  • Noy-Meir, I. 1971b. Multivariate analysis of the semi-arid vegetation in south-eastern Australia: Nodal ordination by component analysis. Proc. Ecol. Soc. Austral. 6: 159–193.

    Google Scholar 

  • Noy-Meir, I. & D. J. Anderson. 1970. Multiple pattern analysis or multiscale ordination: pathway to a vegetation hologram. In: Patil, G. P., E. C. Pielou & W. E. Waters (ed.). Statistical Ecology III. Many species populations, ecosystems and systems analysis, p. 207–232. Pennsylvania State Univ. Press, London.

    Google Scholar 

  • Noy-Meir, I. & M. P. Austin. 1970. Principal component ordination and simulated vegetation data. Ecology 57: 551–552.

    Google Scholar 

  • Orlóci, L. 1966. Geometric models in ecology. 1. The theory and application of some ordination methods. J. Ecol. 54:193–215.

    Google Scholar 

  • Orlóci, L. 1967. Data centering: a review and evaluation with reference to principal component analysis. Syst. Zool. 16: 208–212.

    Google Scholar 

  • Orlóci, L. 1973. Ordination by resemblance matrices. In: R. H. Whittaker (ed.). Handbook of Vegetation Science. Part. V. Classification and ordination of communities, p. 251–286, W. Junk, The Hague.

    Google Scholar 

  • Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Phil. Mag. 6: 559–572.

    Google Scholar 

  • Petrie, W. M. F. 1899. Sequence in prehistoric remains. J. Anthropol. Inst. 29: 295–301.

    Google Scholar 

  • Pielou, E. C. 1962. Runs of one species with respect to another in transects through plant populations. Biometrics 19: 450–459.

    Google Scholar 

  • Pielou, E. C. 1964. The spatial pattern of two-phase patchworks of vegetation. Biometrics 20: 156–167.

    Google Scholar 

  • Pielou, E. C. 1967. A test for random mingling of the phases of a mosaic. Biometrics 23: 657–670.

    PubMed  CAS  Google Scholar 

  • Pinzka, C. & D. R. Saunders. 1954. Analytic rotation to simple structure. II. Extension to an oblique solution. Research Bull. RB-54-31. Educational Testing Service, Princeton, N.J.

  • Prim, R. C. 1957. Shortest connection matrix network and some generalizations. Bell System Tech. J. 36: 1389–1401.

    Google Scholar 

  • Ramensky, L. G. 1930. Zur Methodik der vergleichenden Bearbeitung und Ordnung von Pflanzenlisten und andere Objecten, die durch mehrere, verschiedenartig wirkende Factoren bestimmt werden. Beitr. Biol. Pflanzen. 18: 269–304.

    Google Scholar 

  • Rao, C. R. 1955. Estimation and tests of significance in factor analysis. Psychometrika 20: 93–111.

    Article  Google Scholar 

  • Rippe, D. D. 1953. Application of a large sampling criterion to some sampling problems in factor analysis. Psychometrika 18: 191–205.

    Article  Google Scholar 

  • Rochow, J. J. 1972. A vegetational description of a mid-Missouri forest using gradient analysis techniques. Amer. Midl. Nat. 87: 377–396.

    Google Scholar 

  • Rosenfeld, A. 1969. Picture Processing by Computer. Academic Press, New York. 132 pp.

    Google Scholar 

  • Sammon, J. W. Jr. 1969. A nonlinear mapping for data structure. I.E.E.E. Trans. Computers, C-18: 401–409.

    Google Scholar 

  • Saunders, D. R. 1950. Practical methods of direct factor analysis of score matrices. Ph. D. Thesis, University of Illinois.

  • Saunders, D. R. 1953. An analytic method of rotation to orthogonal simple structure. Research Bull. 53–10. Educational Testing Service, Princeton, N. J.

    Google Scholar 

  • Schönemann, P. H. & R. M. Carroll. 1970. Fitting one matrix to another under choice of central dilation and a rigid rotation. Psychometrika 35: 245–255.

    Google Scholar 

  • Seal, H. 1964. Multivariate Statistical Methods for Biologists. Methuen, London. 209 pp.

    Google Scholar 

  • Searle, N. H. 1969. Shape analysis using Walsh functions. In: Meltzer, B. & D. Michie. (ed.), Machine Intelligence 5. p. 395–409. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27: 125–240, 219–246.

    Google Scholar 

  • Shepard, N. H. & J. D. Carroll. 1965. Parametric representation of nonlinear data structures. In: Krishnaiah, P. R. (ed.). Multivariate Analysis, p. 561–592, Academic Press, N.Y. & London.

    Google Scholar 

  • Sherman, C. R. 1972. Nonmetric multi-dimensional scaling: a Monte Carlo study of the basic parameter. Psychometrika 37: 325–355.

    Article  Google Scholar 

  • Sibson, R. 1971. Some thoughts on sequencing methods. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 255–266. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Sibson, R. 1972. Order invariant methods for data analysis. J. Roy. Statist. Soc. B. 34: 311–349.

    Google Scholar 

  • Siegel, S. 1956. Nonparametric statistics for the behavioural sciences. McGraw-Hill, New York, 312 pp.

    Google Scholar 

  • Sobolev, L. N. 1971. Distinguishing of primary topological units of vegetation employing the methods of L. G. Ramenski. In: Aleksandrova, V. D. (ed.), Methods for Distinguishing Plant Associations, p. 28–35. Acad. Sci. USSR.

  • Sokal, R. R. 1958. Thurstone's analytical method for simple structure and a mass modification thereof. Psychometrika 23: 237–257.

    Article  Google Scholar 

  • Sneath, P. H. A. 1966. A method of curve seeking from scattered points. Comput. J. 8: 383–391.

    Google Scholar 

  • Swan, J. M. A. 1970. An examination of some ordination problems by the use of simulated vegetational data. Ecology 51: 89–102.

    Google Scholar 

  • Swan, J. M. A., R. L. Dix & C. F. Wehrhahn. 1969. An ordination technique based on the best possible stand defined axes and its application to vegetational analysis. Ecology 50: 206–212.

    Google Scholar 

  • Tallis, J. H. 1969. The blanket bog vegetation of the Berwyn mountains, North Wales. J. Ecol. 57: 765–788.

    Google Scholar 

  • Thurstone, L. L. 1935. Vectors of the Mind. University of Chicago Press. Chicago. 266 pp.

    Google Scholar 

  • Thurstone, L. L. 1938. A new rotational method. Psychometrika 3: 199–218.

    Google Scholar 

  • Thurstone, L. L. 1947. Multiple Factor Analysis. University of Chicago Press, Chicago. 535 pp.

    Google Scholar 

  • Toomey, D. F. 1966. Application of factor analysis to a facies study of the Leavenworth Lanston Pennsylvanian Virgilian of Kansas and environs. Univ. Kansas Geol. Surv. S. Distr. Publ. No. 27.

  • Tryon, R. C. & D. E. Bailey. 1970. Cluster Analysis. McGraw-Hill, N.Y. 204 pp.

  • Trunk, G. V. 1968. Statistical estimation of the intrinsic dimensionality of data collections. Inform. Cont. 12: 508–525.

    Google Scholar 

  • Trunk, G. V. 1972. Parameter identification using intrinsic dimension ality. I.E.E.E. Trans. Information Theory. II-18. 126–133.

    Google Scholar 

  • Tucker, L. R. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279–311.

    PubMed  CAS  Google Scholar 

  • Tversky, A. & D. Krantz. 1969. The dimensional representation and the metric structure of similarity data. Michigan Mathematical Psychology Program Tech. Rep. 69-7, Ann Arbor, Michigan.

  • Vries, D. M. de. 1953. Objective combinations of species. Acta Bot. Neerl. 1: 497–499.

    Google Scholar 

  • Watanabe, S. 1967. Karhunen-Loeve expansion and factor analysis. Trans. 4th Prague Conference on Information Theory 1965, p. 635–660, Czechoslovak Acad. Science, Prague.

    Google Scholar 

  • Whittaker, R. H. 1952. A study of summer foliage insect communities in the Great Smokey Mountains. Ecol. Monogr. 22: 1–44.

    Google Scholar 

  • Whittaker, R. H. 1956. The vegetation of the Great Smokey Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 201–264.

    Google Scholar 

  • Whittaker, R. H. (ed.). 1973. Handbook of Vegetation Science. Part V. Ordination and Classification of Communities, Junk, The Hague. 737 pp.

    Google Scholar 

  • Williams, E. J. 1952. Use of scores for the analysis of association in contingency tables. Biometrika 39: 274–289.

    Google Scholar 

  • Williams, W. T. & M. B. Dale. 1965. Fundamental problems in numerical taxonomy. Adv. Bot. Res. 2: 35–68.

    Google Scholar 

  • Williams, W. T., M. B. Dale & G. N. Lance. 1971. Two outstanding ordination problems. Austral. J. Bot. 19: 251–258.

    Google Scholar 

  • Williams, W. T., G. N. Lance, L. J. Webb, J. G. Tracey & J. H. Connell. 1969. Studies in the numerical analysis of complex rain forest communities. IV. A method for the elucidation of small-scale forest pattern. J. Ecol. 57: 635–654.

    Google Scholar 

  • Wilkinson, E. M. 1971. Archaeological seriation and the travelling salesman problem. In: Hodson, F. R., D. G. Kendall & P. Tautu. (ed.). Mathematics in the Archaeological and Historical Sciences, p. 276–284, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, London. 662 pp.

    Google Scholar 

  • Wilson, E. & J. Worcester. 1939. Resolution of six tests into three general factors. Proc. Nat. Acad. Sci. (U.S.A.) 25: 73–77.

    Google Scholar 

  • Wood, K. R., R. L. McCornack & L. T. Villone. 1964. Nonlinear factor analysis program A-78A. Tech. Memo. 1764. Systems Development Corp., Santa Monica, California.

    Google Scholar 

  • Yarranton, G. A. 1967. Principal components analysis of data for saxicolous bryophyte vegetation at Steps Bridge, Devon. Can. J. Bot. 45: 93–118, 229–247.

    Google Scholar 

  • Yarranton, G. A. 1969. Plant ecology: a unifying model. J. Ecol. 57: 245–250.

    Google Scholar 

  • Young, G. & C. Eckart. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1: 211–218.

    Google Scholar 

  • Zólyomi, B. & I. Précsényi. 1964. Methode zur Ökologischen Charakterisierung der Vegetations einheiten und zum Vergleich der Standorts. Acta Bot. Acad. Sci. Hung. 10: 377–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, M.B. On objectives of methods of ordination. Plant Ecol 30, 15–32 (1975). https://doi.org/10.1007/BF02387874

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02387874

Keywords

Navigation