Advertisement

Journal of Materials Science

, Volume 26, Issue 10, pp 2787–2792 | Cite as

High-temperature recovery processes in zone-refined silver chloride

  • M. T. Sprackling
Papers

Abstract

In strain-ageing tests carried out at temperatures above about 400 K, zone-refined silver chloride shows two-stage recovery and no hardening. The activation energy of the second stage of recovery is approximately 0.25 eV and the rate-controlling process is probably the diffusion of chloride ions from jogs in screw dislocations. The duration of the first stage of recovery is shortened by raising the temperature of the test and increased by the addition of divalent impurities. It is concluded that the recovery process in the first stage is the same as that in the second stage, but is inhibited by weak impurity atmosphere formation around dislocations.

Keywords

Polymer Chloride Atmosphere Activation Energy Recovery Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon, Oxford, 1953) p. 39.Google Scholar
  2. 2.
    J. F. Nye,Acta Metall. 1 (1953) 153.Google Scholar
  3. 3.
    R. Bullough andR. C. Newman,Rep. Prog. Phys. 33 (1970) 101.CrossRefGoogle Scholar
  4. 4.
    J. J. Gilman andW. G. Johnston, in “Dislocations and Mechanical Properties of Crystals”, edited by J. C. Fisher, W. G. Johnston, R. Thomson and T. Vreeland, Jr. (Wiley, New York, 1957) p. 116.Google Scholar
  5. 5.
    M. T. Sprackling,Phil. Mag. 9 (1964) 739.Google Scholar
  6. 6.
    A. T. Churchman andA. H. Cottrell,Nature 167 (1950) 943.Google Scholar
  7. 7.
    F. Appel,Mater. Sci. Engng 50 (1981) 199.Google Scholar
  8. 8.
    L. M. Brown andP. L. Pratt,Phil. Mag. 8 (1963) 717.Google Scholar
  9. 9.
    J. L. Lytton, C. L. Meyers andT. E. Tietz,Trans. AIME 224 (1962) 339.Google Scholar
  10. 10.
    T. Hasegawa andU. F. Kocks,Acta Metall. 27 (1979) 1705.Google Scholar
  11. 11.
    R. E. Cook, G. Gottstein andU. F. Kocks,J. Mater. Sci. 18 (1983) 2650.CrossRefGoogle Scholar
  12. 12.
    A. H. Cottrell andV. Aytekin,J. Inst. Metals 77 (1950) 389.Google Scholar
  13. 13.
    F. Asselmeyer andC. Klee,Appl. Phys. 16 (1978) 103.CrossRefGoogle Scholar
  14. 14.
    R. W. Cahn, in “Physical Metallurgy”, edited by R. W. Cahn (North-Holland, Amsterdam, 1965) p. 925.Google Scholar
  15. 15.
    H. J. McQueen andJ. J. Jonas, in “Treatise in Materials Science and Technology”, Vol. 6, edited by R. J. Arsenault (Academic, New York, 1975) p. 393.Google Scholar
  16. 16.
    H. Shalitt andM. T. Sprackling,Phil. Mag. A47 (1983) 331.Google Scholar
  17. 17.
    M. T. Sprackling,Res. Mechanica 10 (1984) 169.Google Scholar
  18. 18.
    M. T. Sprackling andH. Shalitt,Phil. Mag. A49 (1984) 383.Google Scholar
  19. 19.
    M. T. Sprackling andH. Shalitt,Res. Mechanica 20 (1987) 127.Google Scholar
  20. 20.
    M. T. Sprackling,J. Phot. Sci. 37 (1989) 207.Google Scholar
  21. 21.
    D. Kuhlmann,Z. Phys. 124 (1947) 468.Google Scholar
  22. 22.
    A. Seeger,Phil. Mag. 46 (1955) 1194.Google Scholar
  23. 23.
    D. J. Lloyd andK. Tangri,ibid. 26 (1972) 665.Google Scholar
  24. 24.
    J. Weertman,J. Appl. Phys. 28 (1957) 362.Google Scholar
  25. 25.
    S. K. Mitra andD. McLean,Proc. R. Soc. A295 (1966) 288.Google Scholar
  26. 26.
    V. K. Lindroos andH. M. Miekk-Oja,Phil. Mag. 17 (1968) 119.Google Scholar
  27. 27.
    R. D. Fouchaux andR. O. Simmons,Phys. Rev. A 136 (1974) 1664.Google Scholar
  28. 28.
    R. F. Reade andD. S. Martin Jr,J. Appl. Phys. 31 (1960) 1965.CrossRefGoogle Scholar
  29. 29.
    M. T. Sprackling,Phil. Mag. 18 (1968) 691.Google Scholar
  30. 30.
    M. T. Sprackling,Nature 196 (1962) 979.Google Scholar
  31. 31.
    H. C. Abbink andD. S. Martin Jr,J. Phys. Chem. Solids 27 (1966) 205.Google Scholar
  32. 32.
    N. F. Mott,Proc. Phys. Soc. B64 (1951) 729.Google Scholar
  33. 33.
    F. R. N. Nabarro, “Theory of Crystal Dislocations” (Clarendon, Oxford, 1967) p. 349.Google Scholar
  34. 34.
    P. F. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) p. 61.Google Scholar
  35. 35.
    N. F. Mott,Phil. Mag. 44 (1953) 742.Google Scholar
  36. 36.
    H. G. Van Bueren, “Imperfections in Crystals”, 2nd edn (North-Holland, Amsterdam, 1961) p. 223.Google Scholar
  37. 37.
    C. B. Childs andL. M. Slifkin,Br. J. Appl. Phys. 16 (1965) 771.CrossRefGoogle Scholar
  38. 38.
    B. I. Smirnov andB. A. Efimov,Phys. Status Solidi 16 (1966) 191.Google Scholar
  39. 39.
    B. I. Smirnov,Sov. Phys. Solid State 9 (1967) 319.Google Scholar
  40. 40.
    N. Louat,Proc. Phys. Soc. B69 (1956) 459.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • M. T. Sprackling
    • 1
  1. 1.Department of PhysicsKing's College, LondonLondonUK

Personalised recommendations