Journal of Materials Science

, Volume 9, Issue 4, pp 607–613 | Cite as

The oxidation resistance and hardness of some intermetallic compounds

  • H. E. N. Stone


Thirty-nine intermetallic compounds have been oxidation-tested in air. These include all the known compounds in the Al-V, Al-Ni and Al-La systems, three compounds each from the Al-Mn and Cu-Zn systems, four zinc-rich transition-metal phases, six intertransition metal Laves phases, and the equiatomic compounds of antimony with aluminium, indium and nickel respectively. From the oxidation results the temperature corresponding to a weight change of 1 mg cm−2 (4h)−1 was determined by interpolation. An attempt is made to classify the compounds in terms of the ratio of this temperature to the melting point of the appropriate compound or its oxidation product. The hardness of the compounds and of additional Al-3d compounds has been estimated, and in conjunction with the oxidation data forms the basis for some observations on the nature and incidence of binary intermetallic compounds of high atomic ratio.


Oxidation Polymer Indium Nickel Melting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. N. Stone,J. Mater. Sci. 1 (1972) 1147.Google Scholar
  2. 2.
    Idem, ibid 8 (1973) 1009.CrossRefGoogle Scholar
  3. 3.
    A. D. Caplin, G. Grüner andJ. B. Dunlop,Phys. Rev. Letters 30 (1973) 1138.CrossRefGoogle Scholar
  4. 4.
    H. E. N. Stone,J. Phys. (E) 4 (1971) 1058.Google Scholar
  5. 5.
    Idem, unpublished work.Google Scholar
  6. 6.
    G. V. Raynor, Paper 3A, “The Physical Chemistry of Metallic Solutions and Intermetallic Compounds”, N. P. L. Symposium No. 9, 1958 (HMSO, London, 1959).Google Scholar
  7. 7.
    P. J. Brown,Acta Cryst. 10 (1957) 133.Google Scholar
  8. 8.
    J. F. Smith andA. E. Ray,ibid 10 (1957) 169.Google Scholar
  9. 9.
    F. Laves, in “Intermetallic Compounds” (edited by J. H. Westbrook) (Wiley, New York, 1966) p. 129.Google Scholar
  10. 10.
    M. Hansen andK. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) and supplements.Google Scholar
  11. 11.
    G. V. Raynor,Progr. Metal Phys. 1 (1949) 1.Google Scholar
  12. 12.
    W. Hume-Rothery andB. R. Coles,Adv. Phys. 3 (1954) 149.CrossRefGoogle Scholar
  13. 13.
    P. Gross,Discuss. Faraday Soc. 4 (1948) 206.Google Scholar
  14. 14.
    W. Hume-Rothery, R. E. Smallman andC. W. Haworth, “The Structure of Metals and Alloys” (The Metals and Metallurgy Trust, London, 1969) p. 47.Google Scholar
  15. 15.
    A. Iandelli, Paper 3F, “The Physical Chemistry of Metallic Solutions and Intermetallic Compounds”, N.P.L. Symposium No. 9, 1958 (HMSO, London, 1959).Google Scholar
  16. 16.
    K. A. Gscheidner Jun, “Rare Earth Alloys” (van Nostrand, Princeton, 1961) p. 103.Google Scholar
  17. 17.
    E. H. Hollingsworth, G. R. Frank Jun andR. E. Willett,Trans, Met. Soc. AIME 224 (1962) 188.Google Scholar
  18. 18.
    N. P. Allen andW. E. Carrington,J. Inst. Metals 82 (1953) 523.Google Scholar
  19. 19.
    E. Babić, E. Girt, R. Krsnik, B. Leontić, M. Očko, Z. Vučić andI. Zorić Phys. Stat. Sol. (to be published).Google Scholar

Copyright information

© Chapman and Hall Ltd 1974

Authors and Affiliations

  • H. E. N. Stone
    • 1
  1. 1.Department of PhysicsImperial CollegeLondonUK

Personalised recommendations