Carbonate radical induced polymerisation of pyrrole: A steady state and flash photolysis study

  • Amit Bhattacharya
  • De Amitabha
  • P. C. Mandal


Conventionally polymerisation of pyrrole is carried out either by chemical or electrochemical oxidation. In the present study polymerisation of pyrrole was carried out in a novel way in order to investigate the kinetics of the reactions involved. Carbonate radical (CO3) generated either radiolytically or photolytically from a sodium carbonate solution, was employed as the oxidant for the polymerisation reaction Flash photolysis and steady state ψ-radiolysis of pyrrole solution containing sodium carbonate was used for generating different intermediate and stable polymeric species. The kinetics of the formation and decay of different intermediate species were studied using UV-VIS spectrophotometry and the disappearances of the monomer was ascertained using HPLC. After analysing the species and steps involved a plausible mechanism for the polymerisation of pyrrole is suggested.


HPLC Steady State Photolysis Pyrrole Spectrophotometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bhattacharya, A. De, S. Das, Polymer, 37 (19) (1996) 4375.CrossRefGoogle Scholar
  2. 2.
    J. Unsworth, P. C. Innis, B. A. Lunn, J. Jin, G. P. Norton, Synth. Met., 53 (1992), 59.Google Scholar
  3. 3.
    J. Gao, A. J. Heeger, J. Y. Lee, C. Y. Kim, Synth. Met., 82 (1996) 221.Google Scholar
  4. 4.
    S. P. Armes, Synth. Met., 20 (1987) 365.Google Scholar
  5. 5.
    A. Bhattacharya, A. De, S. N. Bhattacharya, S. Das, J. Phys. D. Condens. Matter, 6 (1994), 10499.Google Scholar
  6. 6.
    K. Tanaka, T. Shichiri, M. Toriumi, T. Yamabe, Synth. Met., 30 (1989) 271.Google Scholar
  7. 7.
    R. John, G. G. Wallace, J. Electroanal Chem., 306 (1991), 157.CrossRefGoogle Scholar
  8. 8.
    R. E. Huie, C. L. Clifton, P. Neta, Radiat. Phys.and Chem., 38 (1991) 477.Google Scholar
  9. 9.
    J. W. T. Spinks, R. J. Woods, An Introduction to Radiation Chemistry, 2nd ed. Wiley, New York, 1976, p. 247.Google Scholar
  10. 10.
    F. S. Dainton, D. B. Peterson, Nature, 186 (1960) 878; Proc. Roy. Soc. London, Ser. A., 267 (1962), 443.Google Scholar
  11. 11.
    M. Anbar, M. Bambenek, A. B. Ross, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., 43 (1973).Google Scholar
  12. 12.
    G. E. Adams, J. W. Boag, Proc. Chem. Soc., London (1964) 112.Google Scholar
  13. 13.
    M. Anbar, P. Neta, Intern. J. Appl. Radiation Isotopes, 18 (1967) 493.CrossRefGoogle Scholar
  14. 14.
    E. Hayon, J. J. McGarvey, J. Phys. Chem., 71 (1967) 1472.CrossRefGoogle Scholar
  15. 15.
    S. Chen, V. W. Cope, M. Z. Hoffman, J. Phys. Chem., 77 (1973) 1111.Google Scholar
  16. 16.
    I. G. Draganic, Z. D. Draganic, The Radiation Chemistry of Water, Academic Press, New York, 1971.Google Scholar
  17. 17.
    B. S. Kim, W. H. Kim, S. N. Hoier, S. M. Park, Synth. Met., 69 (1995) 455.Google Scholar
  18. 18.
    P. C. Mandal, D. K. Bardhan, S. Sarkar, S. N. Bhattacharyya, J. Chem. Soc. Dalton Trans., (1991) 1457.Google Scholar
  19. 19.
    C. P. Andrieux, P. Audebert, P. Hapiot, J. M. Saveant, J. Am. Chem. Soc., 112 (1990) 2439.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • Amit Bhattacharya
    • 1
  • De Amitabha
    • 1
  • P. C. Mandal
    • 1
  1. 1.Nuclear Chemistry DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations