Advertisement

Interfacial behavior of ACORGA CLX-50 and surface kinetics of copper extraction

  • C. Bouvier
  • G. Cote
  • A. Sobczynska
  • M. B. Bogacki
  • J. Szymanowski
Solvent Extraction, Liquid Membranes, and Micellar Separations

Abstract

Interfacial tension isotherms were determined and interpreted for ACORGA CLX-50. The hydration of extractant molecules in aqueous solution and at hydrocarbon/water interfaces was studied by molecular modelling. The usefulness of this technique to interpret the adsorption behavior was demonstrated. The interfacial kinetics was considered and relationships for various models of interfacial mechanism were derived and discussed. Despite its high hydrophobicity, ACORGA CLX 50 strongly adsorbs at the hydrocarbon/water interfaces and thus decreases effectively the interfacial tension. This high interfacial activity of ACORGA CLX 50 can be explained by the formation of hydrates. The interfacial tension isotherm can be well matched with the Szyszkowski equation. Molecular modelling suggests that ACORGA CLX 50 adsorbs at the hydrocarbon/water interface probably as a tetrahydrate containing two water molecules bonded to the same carbonyl oxygen atom (e.g., at position 3), one water molecule bonded to the oxygen atom of the second alkoxyl group (i.e., at position 5 when the hydration of carbonyl oxygen at position 3 is previously considered) and, finally, one water molecule bonded with the pyridine nitrogen atom. Positions 3 and 5 are equivalent. It is also shown that when the extraction of copper takes place in the kinetic regime, the reaction order with respect to ACORGA CLX 50 can change depending on the limiting step and the range of extractant concentration considered. Thus, a decrease of the extractant concentration from 10−5M to 3·10−3M causes a fall of the order with respect to ACORGA CLX 50 from 1 to 0 and 2 to 1 when the formation of the intermediate 1∶1 and final 2∶1 complexes are considered to be the limiting step, respectively.

Keywords

Interfacial Tension Molecular Modelling Carbonyl Oxygen Extractant Concentration Tetrahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Szymanowski, Hydroxyoximes and Copper Hydrometallurgy, CRS Press, Boca Raton, FL., 1993.Google Scholar
  2. 2.
    J. Szymanowski, J. Radional. Nucl. Chem., 208 (1996), 208.CrossRefGoogle Scholar
  3. 3.
    R. F. Dalton, R. Price, P. M. Quan. D. Steward, Eur. Pat. 57797 (1982).Google Scholar
  4. 4.
    R. F. Dalton, R. Price, P. M. Quan, Proc. ISEC'83, American Inst. Chem. Eng., New York, 1983, p. 189.Google Scholar
  5. 5.
    R. F. Dalton, R. Price, E. Hermana, B. Hoffmann, in: Separation Processes in Hydrometallurgy,G. A. Davies (Ed.), SCI/Ellis Horwood, Chichester, 1987, p. 466.Google Scholar
  6. 6.
    J. Szymanowski, A. Jakubiak, G. Cote, D. Bauer, J. Beger, Solvent Extraction in the Process Industries, in: Proc. of ISEC'93,D. H. Logsdail andM. J. Slater (Eds), SCI/Elsevier, London, 1993, p. 1311.Google Scholar
  7. 7.
    G. Cote, A. Jakubiak, D. Bauer, J. Szymanowski, B. Mokili, C. Poitrenaud, Solvent Extr. Ion Exch., 12 (1994), 99.Google Scholar
  8. 8.
    A. Jakubiak, J. Szymanowski, G. Cote, Value Adding Through Solvent Extraction, in: Proc. ISEC'96,D. C. Shallcross, R. Paimin andL. M. Prvcic (Eds), The University of Melbourne, 1996, p. 517.Google Scholar
  9. 9.
    M. B. Bogacki, J. Szymanowski, Solvent Extr. Ion Exch., 14 (1996) 897.Google Scholar
  10. 10.
    A. Borowiak-Resterna, J. Szymanowski, R. Cierpiszewski, K. Prochaska, I. Banczyk, Solvent Extraction in the Process Industries, in: Proc. of ISEC'93,D. H. Logsdail andM. J. Slater (Eds), SCI/Elsevier, London, 1993, p. 578.Google Scholar
  11. 11.
    A. Borowiak-Resterna, Solvent Extr. Ion Exch., 12 (1994), 557.Google Scholar
  12. 12.
    A. Borowiak-Resterna, J. Szymanowski, Value Adding Through Solvent Extraction, in: Proc. ISEC'96,D. C. Shallcross, R. Paimin andL. M. Prvcic (Eds), The University of Melbourne, 1996, p. 569.Google Scholar
  13. 13.
    K. Prochaska, K. Alejski, J. Szymanowski, Proc. 2nd Intern. Conf. on Separation Science and Technology, Hamilton, Canada,M. H. I. Baird andS. Vijayan (Eds), Can. Soc. Chem. Eng., Ottawa, 1989, p. 181.Google Scholar
  14. 14.
    K. Prochaska, K. Alejski, J. Szymanowski, Progr. Colloid Polym. Sci., 79 (1989), 327.Google Scholar
  15. 15.
    J. J. P. Steward, MOPAC v. 6.0, QCPE 455, University of Indiana, Bloomington, IN, USA, 1990.Google Scholar
  16. 16.
    J. Szymanowski, Solvent Extr. Res. Dev. Japan, 1 (1994) 97.Google Scholar
  17. 17.
    J. Szymanowski, Crit. Rev. Anal. Chem. 25 (1995), 143.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • C. Bouvier
    • 1
  • G. Cote
    • 1
  • A. Sobczynska
    • 2
  • M. B. Bogacki
    • 2
  • J. Szymanowski
    • 2
  1. 1.Laboratoire de Chimie Analytique (Unité associée au CNRS No. 437)E.S.P.C.I.ParisFrance
  2. 2.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations