The variation of the stability constant of AmCl2+ in a mixed system of methanol and water

  • H. Suganuma
  • M. Nakamura
  • I. Satoh
  • T. Omori


The stability constants, β1, of each monochloride complex of Am(III) have been determined in a mixed system of methanol and water at 1.0 mol·dm−3 ionic strength using a solvent extraction technique. The values of β1 of Am(III) decrease up to about 0.1 mole fraction of methanol (Xs) in the bulk solutions and then increase with increasingXs when 0.1<Xs≤0.4. The distance of Am3+−Cl in the mixed system was estimated using a Born-type equation. From the estimated distance of Am3+−Cl (dAm−Cl), it is concluded that AmCl2+ in the aqueous solution is present as a solvent-shared ion-pair. Further, based on the variation of dAm−Cl with increasingXs, the variations of β1 in the system are accounted for by the size-variation of the primary solvation sphere around Am(III) and by an effect due to the presence of a slight covalency in the solvation of Am(III).


Methanol Physical Chemistry Aqueous Solution Inorganic Chemistry Ionic Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Peppin, E. R. Vance, J. Inorg. Nucl. Chem. 43 (1981) 2807.Google Scholar
  2. 2.
    A. Habenschuss, F. H. Spedding, J. Chem. Phys., 70 (1979) 2797.Google Scholar
  3. 3.
    A. Habenschuss, F. H. Spedding, J. Chem. Phys., 70 (1979) 3758.Google Scholar
  4. 4.
    A. Habenschuss, F. H. Spedding, J. Chem. Phys., 73 (1980) 442.CrossRefGoogle Scholar
  5. 5.
    H. Kanno, J. Hiroishi, J. Phys. Chem., 86 (1982) 1488.CrossRefGoogle Scholar
  6. 6.
    B. Fourest, J. Duplessis, F. David, Radiochim. Acta, 36 (1984) 191.Google Scholar
  7. 7.
    R. D. Shannon, Acta Crystallogr., A32 (1976) 751.Google Scholar
  8. 8.
    H. Suganuma, I. Satoh, T. Omori, M. Yagi, Radiochim. Acta, 77 (1997) 207.Google Scholar
  9. 9.
    H. Suganuma, T. Katoh, S. Suzuki, I. Satoh, T. Omori, G. R. Choppin, Radiochim. Acta, 75 (1996) 23.Google Scholar
  10. 10.
    G. Johansson, H. Yokoyama, Inorg. Chem., 29 (1990) 2460.CrossRefGoogle Scholar
  11. 11.
    G. Johansson, H. Wakita, Inorg. Chem., 24 (1985) 3047.CrossRefGoogle Scholar
  12. 12.
    H. Suganuma, M. Nakamura, I. Satoh, T. Omori, J. Radioanal. Nucl. Chem. (in press).Google Scholar
  13. 13.
    F. Tanaka, Y. Kawasaki, S. Yamashita, J. Chem. Soc., Faraday Trans. I, 84 (1988) 1083.Google Scholar
  14. 14.
    H. Suganuma, M. Nakamura, T. Katoh, I. Satoh, T. Omori, J. Radioanal. Nucl. Chem., 223 (1997) 167.CrossRefGoogle Scholar
  15. 15.
    M. Eigen, Ber. Bunsenges. Phys. Chem., 67 (1963) 753.Google Scholar
  16. 16.
    G. R. Choppin, P. J. Unrein, Transplutonium Elements,W. Müller, R. Linder (Eds), North-Holland Publishing Company, Amsterdam, 1976, p. 97.Google Scholar
  17. 17.
    E. P. Serjeant, Potentiometry and Potentiometric Titration, Wiley, New York, 1984, p. 411.Google Scholar
  18. 18.
    Y. H. Inami, H. K. Bodenseh, J. B. Ramsey, J. Am. Chem. Soc., 83 (1961) 4745.CrossRefGoogle Scholar
  19. 19.
    J. Padova, J. Chem. Phys., 39 (1963) 1552.Google Scholar
  20. 20.
    G. R. Choppin, E. N. Rizkalla, Handbook on the Physics and Chemistry of Rare Earths, Vol. 18: Lanthanides/Actinides: Chemistry,K. A. Gschneidner, Jr., L. Eyring, G. R. Choppin, G. H. Lander (Eds), Elsevier Science, Amsterdam, 1994, p. 563.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • H. Suganuma
    • 1
  • M. Nakamura
    • 1
  • I. Satoh
    • 2
  • T. Omori
    • 1
  1. 1.Radiochemistry Research Laboratory, Faculty of ScienceShizuoka UniversityShizuoka-shiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendai-shiJapan

Personalised recommendations