Advertisement

Arkiv för Matematik

, Volume 27, Issue 1–2, pp 179–187 | Cite as

A titchmarsh-type convolution theorem on the groupZ

  • A. A. Borichev
Article
  • 34 Downloads

Keywords

Convex Hull Invariant Subspace Banach Algebra Regularity Assumption Convolution Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Titchmarsh, E. C., The zeros of certain integral functions,Proc. Lond. Math. Soc. 25 (1926), 283–302.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Domar, Y., A solution of the translation-invariant subspace problem for weightedL p onR, R + orZ, in:Radical Banach algebras and automatic continuity, Proceedings, Long Beach 1981, Lecture Notes in Math. 975, pp. 214–226, Springer-Verlag, Berlin etc., 1983.CrossRefGoogle Scholar
  3. 3.
    Domar, Y., Extension of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces.Proc. Lond. Math. Soc. 46 (1983), 288–300.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ostrovskiî, I. V., Generalization of the Titchmarsh convolution theorem and the complexvalued measures uniquely determined by their restrictions to a half-line, in:Stability problems for stochastic models, Proc., Uzhgorod 1984, Lecture Notes in Math. 1155, pp. 256–283, Springer-Verlag, Berlin etc., 1985.CrossRefGoogle Scholar
  5. 5.
    Dyn’kin, E. M., Functions with a given estimate for\(\partial f/\partial \bar z\) and N. Levinson’s theorem,Math. Sb. 81 (123), 182–190; English transl. inMath. USSR Sb. 18 (1972), 181–189.Google Scholar
  6. 6.
    Borichev, A. A.,Convolution equations, invariant subspaces, and an extension of Titchmarsh theorem, LOMI Preprint P-5-88, Leningrad, 1988 [Russian].Google Scholar
  7. 7.
    Domar, Y., Translation invariant subspaces of weightedL p andl p spaces,Math. Scand. 49 (1981), 133–144.MathSciNetGoogle Scholar
  8. 8.
    Nikol’skiî, N. K., Invariant subspaces in the theory of operators and in the theory of functions, in:Itogi Nauki: Mat. Anal., v. 12, VINITI, Moscow, 1974, pp. 199–412; English transl. inJ. Soviet Math. 5 (1976), 129–249.Google Scholar

Copyright information

© Institut Mittag-Leffler 1989

Authors and Affiliations

  • A. A. Borichev
    • 1
  1. 1.LOMILeningradUSSR

Personalised recommendations