Arkiv för Matematik

, Volume 27, Issue 1–2, pp 155–168 | Cite as

On isomorphisms between Hardy spaces on complex balls

  • Tomasz M. Wolniewicz


Unit Ball Hardy Space Complex Ball Strong Markov Property Measurable Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, A. B., The existence of inner functions in the ball,Mat. Sb. 118 (1982), 147–163; English transl. inMath. USSR-Sb. 46 (1983), 143–159.MathSciNetGoogle Scholar
  2. 2.
    Coifman, R. R., Rochberg, R. andWeiss, G., Factorization theorems for Hardy spaces in several variables,Ann. Math. 103 (1976), 611–635.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Coifman, R. R. andWeiss, G., Extension of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc. 83 (1977), 569–645.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Debiard, A., Comparaison des espacesH p géométriques et probabilistes audessus de l’espace hermitien hyperbolique,Bull. Sci. Math. 103 (1979), 305–351.MATHMathSciNetGoogle Scholar
  5. 5.
    Debiard, A. andGaveau, B., Frontière de Silov de domaines faiblement pseudoconvexes deC n,Bull. Sci. Math. 100 (1976), 17–31.MATHMathSciNetGoogle Scholar
  6. 6.
    Dellacherie, C. andMeyer, P.-A.,Probabilités et potentiel, Ch. V à VIII, Hermann, Paris, (1980).MATHGoogle Scholar
  7. 7.
    Dynkin, E. B.,Markov processes, Springer-Verlag, (1965).Google Scholar
  8. 8.
    Garnett, J. B. andLatter, R. H., The atomic decomposition for Hardy spaces in several complex variables,Duke Math. J. 45 (1978), 815–845.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garsia, A.,Martingale inequalities: Seminar notes on the recent progress, W. A. Benjamin Reading, Mass., (1973).Google Scholar
  10. 10.
    Maurey, B., Isomorphismes entre espacesH 1,Acta Math. 145 (1980), 79–120.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    McKean, H. P.,Stochastic integrals, Academic Press, (1969).Google Scholar
  12. 12.
    Petersen, K. E.,Brownian motion, Hardy spaces and bounded mean oscillation, Cambridge Univ. Press, (1977).Google Scholar
  13. 13.
    Rudin, W.,Function theory in the unit ball of C n, Springer-Verlag, (1980).Google Scholar
  14. 14.
    Shapiro, J. H., Boundary values, distance estimates and bounded mean oscillation for functions holomorphic in a ball,Preprint, (1985).Google Scholar
  15. 15.
    Spivak, M.,A comprehensive introduction to differential geometry, 1, Publish or Perish, Inc., Berkeley, (1979).Google Scholar
  16. 16.
    Shur, M. G., Harmonic and superharmonic functions connected with diffusion processes,Sibirsk. Mat. Zh. 1 (1960), 277–296; English transl. inSelect. Transl. Math. Stat. Prob. 7 (1968), 40–62.Google Scholar
  17. 17.
    Williams, D.,Diffusions, Markov processes, and martingales, 1, John Wiley & Sons, (1979).Google Scholar
  18. 18.
    Wojtaszczyk, P. Hardy spaces on the complex ball are isomorphic to Hardy spaces on the disc, 1≦p<∞,Ann. Math. 118 (1983), 21–34.CrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1989

Authors and Affiliations

  • Tomasz M. Wolniewicz
    • 1
  1. 1.Institute of Mathematics UMKTorunPoland

Personalised recommendations