A multiple approach to the determination of radon fluxes from sediments

  • D. R. Corbett
  • W. C. Burnett
  • P. H. Cable
  • S. B. Clark
Radium and Radon Measurement


Determination of sedimentary fluxes of222Rn via diffusion was required as an input for a mass balance model of radon in a freshwater lake. We obtained these fluxes by: (1) direct measurement in the laboratory using a simulated sediment bed and water column; (2) a “sediment equilibration” technique; and (3) porewater modeling. The first method, analogous to an in situ benthic chamber approach, uses direct observation of the increasing222Rn activity in water overlying a sediment bed packed in plastic columns. This allows one to directly measure the fluxes and determine the effective wet bulk sediment diffusion coefficient (Ds). Radon flux estimates using these three techniques agreed to within approximately 10–15%.


Radon Mass Balance Balance Model Freshwater Lake Sedimentary Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Key, N. L. Guinasso, Jr., D. R. Schink, Mar. Chem., 7 (1979) 221.Google Scholar
  2. 2.
    D. E. Hammond, H. J. Simpson, G. Mathieu, J. Geophys. Res., 82 (1977) 3913.Google Scholar
  3. 3.
    K. A. Gruebel, C. S. Martens, Limnol. Oceanogr., 29 (1984) 587.Google Scholar
  4. 4.
    C. S. Martens, J. P. Chanton, J. Geophys. Res., 94 (1989) 3451.Google Scholar
  5. 5.
    J. E. Cable, G. C. Bugna, W. C. Burnett, J. P. Chanton, Limnol. Oceanogr., 41 (1996) 1347.Google Scholar
  6. 6.
    D. R. Corbett, W. C. Burnett, P. H. Cable, S. B. Clark, J. Hydrology (1997) in press.Google Scholar
  7. 7.
    C. S. Martens, G. W. Kipphut, J. V. Klump, Science, 208 (1980) 285.Google Scholar
  8. 8.
    G. G. Mathieu, R. A. Lupton, D. E. Hammond, Health Phys., 55 (1988) 989.Google Scholar
  9. 9.
    R. H. Hesslein, Limnol. Oceanogr., 41 (1976) 1347.Google Scholar
  10. 10.
    T. H. Peng, T. Takahashi, W. S. Brocker, J. Geophys. Res., 79 (1974) 1772.Google Scholar
  11. 11.
    W. J. Ullman, R. C. Aller, Limnol. Oceanogr., 27 (1982) 552Google Scholar
  12. 12.
    R. A. Berner, Principles of chemical sedimentology, McGraw-Hill, New York, N.Y., 1971, p. 240.Google Scholar
  13. 13.
    W. S. Broecker, T. H. Peng, Tellus, 26 (1974) 21.Google Scholar
  14. 14.
    B. Hartman, D. E. Hammond, J. Geophys. Res., 89 (1984) 3593.Google Scholar
  15. 15.
    J. E. Cable, W. C. Burnett, J. P. Chanton, G. L. Weatherly, Estuarine, Coastal and Shelf Science, 144 (1996) 591.Google Scholar
  16. 16.
    R. A. Berner, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, N.J., 1980, p. 241.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • D. R. Corbett
    • 1
  • W. C. Burnett
    • 1
  • P. H. Cable
    • 1
  • S. B. Clark
    • 2
  1. 1.Department of Oceanography, Florida State UniversityEnvironmental Radioactivity Measurement FacilityTallahasseeUSA
  2. 2.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA

Personalised recommendations