Arkiv för Matematik

, Volume 26, Issue 1–2, pp 55–65 | Cite as

Some good unirational families of space curves

  • Mei-Chu Chang


Modulus Space Exact Sequence General Plane Maximal Rank Hilbert Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Hulek, K., Monads and moduli of vector bundles.Manuscr. Math. 25 (1978), 323–347.CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Chang, M., Stable rank-2 reflexive sheaves onP 3 with smallc 2 and applications.Trans. A.M.S. 284 (1984), 57–89.CrossRefMATHGoogle Scholar
  3. 3.
    Chang, M., Ran, Z., Unirationality of the moduli spaces of curves of genus ≦13.Invent. Math. 76 (1984), 41–54.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    ——, The Kodaira dimension of the moduli space of curves of genus 15.J. Differential Geometry 24 (1986), 205–220.MathSciNetMATHGoogle Scholar
  5. 5.
    Chang, M., Ran, Z., Deformations and smoothing of complete linear systems on reducible curves.Proceedings of Symposia in Pure Mathematics (1987).Google Scholar
  6. 6.
    Harris, J., Mumford, D., On the Kodaira dimension of the moduli space of curves.Invent. Math. 67 (1982), 23–97.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Lazarsfeld, R., Rao, P., Linkage of general curves of large degree. In:Algebraic Geometry—Open Problems. Lec. Notes in Math.997 267–289 Berlin: Springer (1984).CrossRefGoogle Scholar
  8. 8.
    Peskine, C., Szpiro, L., Liaison des varietés algébriques.Inv. Math. 26 (1974), 271–302.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Rao, P., Liaison among curves inP 3.Inv. Math. 50 (1979), 205–217.CrossRefMATHGoogle Scholar
  10. 10.
    Sernesi, E., On the existence of certain families of curves.Inv. Math. 75 (1984), 25–57.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Sernesi, E., (to appear).Google Scholar

Copyright information

© Institut Mittag-Leffler 1988

Authors and Affiliations

  • Mei-Chu Chang
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations