New membrane assembly in IgE receptor-mediated exocytosis

  • E. A. Schmauder-Chock
  • S. P. Chock


The presence of excess membrane has been observed in the secretory granules of mast cells activated via the physiological mechanism of IgE receptor-mediated exocytosis. This excess membrane is the result of ade novo assembly from phospholipid, cholesterol, and other membrane components stored in the quiescent granule. Following receptor stimulation, membrane bilayer structures of varying size and shape can be seen in the subperigranular membrane space where the perigranular membrane has lifted away from the granule matrix. Vesicles as small as 25 nm in outer diameter are frequently found beneath the perigranular membrane at the site of granule fusion. Membrane in the form of elongated vesicles, tubes, or sheets has also been observed. The wide variation in size and shape of the newly assembled membrane may reflect the spontaneity of the entropy-driven membrane generation process and the fluid characteristic of the biological membrane in general. Fusion of the newly assembled membrane with the perigranular membrane enables the activated granule to enlarge. This rapid expansion process of the perigranular membrane may be the principal mechanism by which an activated granule can achieve contact with the plasma membrane in order to generate pore formation. The fact that new membrane assembly also occurs in the IgE receptor-mediated granule exocytosis, supports our observation thatde novo membrane generation is an inherent step in the mechanism of mast cell granule exocytosis. Whether new membrane assembly is a common step in the mechanism of secretory granule exocytosis in general, must await careful reinvestigation of other secretory systems.


  1. Albers, R. W., Chock, E. S., Donlon, M. A., &Chock, S. P. (1985) Localization of calmodulin in the mast cell granules.Fed. Proc. 44, 984 (abstr. 3353).Google Scholar
  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. &Watson, J. D. (1983)Molecular biology of the cell. p. 350. New York and London: Garland Publishing Inc.Google Scholar
  3. Andreoli, T. E. (1974) Planar lipid bilayer membranes. InMethods in Enzymology (edited byFleischer, S. &Packer A.) Vol. 32, pp. 513–7. New York: Academic Press.Google Scholar
  4. Blaschko, H., Firemark, H., Smith, A. D. &Winkler, H. (1967) Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules.Biochem. J. 104, 545–9.PubMedGoogle Scholar
  5. Broom, G. D. &Haegermark, O. (1965) A study on morphological changes and histamine release induced by compound 48/80 in rat peritoneal mast cells.Exptl. Cell Res. 40, 637–54.CrossRefGoogle Scholar
  6. Bloom, G. D. &Chakravarty, N. (1970) Time course of anaphylactic histamine release and morphological changes in rat peritoneal mast cells.Acta Physiol. Scand. 78, 410–9.PubMedGoogle Scholar
  7. Bloom, G. D., Fredholm, B. &Haegermark, O. (1967) Studies on the time course of histamine release and morphological changes induced by histamine liberators in rat peritoneal mast cells.Acta. Physiol, Scand. 71, 270–82.Google Scholar
  8. Chandler, D. E. &Heuser, J. E. (1980) Arrest of membrane fusion events in mast cells by quick-freezing.J. Cell Biol. 86, 666–74.CrossRefPubMedGoogle Scholar
  9. Chock, E. S., Donlon, M. A., Fiori, C. E. &Catravas, G. N. (1982) Elemental analysis for calcium in rat peritoneal mast cell granules.J. Cell Biol. 95, 409a.Google Scholar
  10. Chock, S. P., Donlon, M. A. &Chock, E. S. (1984) Localization of calmodulin in the mast cell granules.Fed. Proc. 43, 1934 (abstr. 3026).Google Scholar
  11. Chock, S. P. &Chock, E. S. (1985) A two-stage fusion model for secretion.Fed. Proc. 44, 1324 (abstr. 5341).Google Scholar
  12. Chock, S. P. &Schmauder-Chock, E. A. (1985) Evidence ofde novo membrane generation in the mechanism of mast cell secretory granule activation.Biochem. Biophys. Res. Commun. 132, 134–9.CrossRefPubMedGoogle Scholar
  13. Chock, S. P. &Schmauder-Chock, E. (1987) The mast cell granules: A phospholipid source for prostaglandins synthesis. InProstaglandins and Lipid Metabolism in Radiation Injury (edited byWalden, T. L. &Hughes H. N.), pp. 127–32. New York: Plenum Press.Google Scholar
  14. Chock, S. P. &Schmauder-Chock, E. A. (1988) Synthesis of prostaglandins and eicosanoids by the mast cell secretory granule.Biochem. Biophys. Res. Commun. 156, 1308–15.CrossRefPubMedGoogle Scholar
  15. Chock, S. P. &Schmauder-Chock, E. A. (1989) Phospholipid storage in the secretory granule of the mast cell.J. Biol. Chem. 264, 2862–8.PubMedGoogle Scholar
  16. Chock, S. P. & Schmauder-Chock, E. A. (1990) Minireview. A new model for the mechanism of stimulus-secretion coupling.Biofactors (in press).Google Scholar
  17. Curtis, S. K., Cowden, R. R. &Nagel, J. W. (1979) Ultrastructural and histochemical features of the thymus glands of the adult lungless salamander,Plethodon glutinosus (Caudata: Plethodontidae).J. Morphol. 160, 241–74.CrossRefPubMedGoogle Scholar
  18. Danielli, J. F. &Davson, H. (1935) A contribution to the theory of permeability of thin films.J. Cell. Comp. Physiol. 5, 495–508.CrossRefGoogle Scholar
  19. Douglas, W. W. (1974) Involvement of calcium in exocytosis and exocytosis-vesiculation sequence.Biochem. Soc. Symp. 39, 1–28.PubMedGoogle Scholar
  20. Fonio, A. (1951) Uber das funktionelle verhalten der isolierten Strukturelements der Thrombocyten, des Hyalomers und des Granulomers.Acta Haemat. 6, 207–12.PubMedCrossRefGoogle Scholar
  21. Frank, H. S. &Evans, M. W. (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes.J. Chem. Phys. 13, 507–32.CrossRefGoogle Scholar
  22. Helle, K. B. (1973) Biochemical studies of the chromaffin granule. III. Redistribution of lipid phosphate, dopamine-beta-hydroxylase and chromogranin A after freezing and thawing of the isolated granule membranes.Biochim. Biophys. Acta 318, 167–80.PubMedGoogle Scholar
  23. Henderson, W. R. &Chi, E. Y. (1985) Ultrastructural characterization and morphometric analysis of human eosinophil degranulation.J. Cell Sci. 73, 33–48.PubMedGoogle Scholar
  24. Huang, C. (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics.Biochemistry 8, 344–52.CrossRefPubMedGoogle Scholar
  25. Huang, C. &Mason, J. T. (1978) Geometric packing constraints in egg phosphatidylcholine vesicles.Proc. Natl. Acad. Sci. USA 75, 308–10.PubMedGoogle Scholar
  26. Ishizaka, K. (1985) Twenty years with IgE: From the identification of IgE to regulatory factors for the IgE response.J. Immunol. 135(1), i-x.PubMedGoogle Scholar
  27. Ishizaka, K., Tomioka, H. &Ishizaka, T. (1970) Mechanism of passive sensitization. I. Presense of IgE and IgG molecules on human leukocytes.J. Immunol. 105, 1459–67.PubMedGoogle Scholar
  28. Ishizaka, K. (1982) Biochemical analysis of triggering signals induced by bridging of IgE receptors.Fed. Proc. 41, 17–21.PubMedGoogle Scholar
  29. Ishizaka, T., Sterk, A. R., Daeron, M., Becker, E. L. &Ishizaka, K. (1985) Biochemical analysis of desensitization of mouse mast cells.J. Immunol. 135, 492–501.PubMedGoogle Scholar
  30. Kagey-sobotka, A., Macglashen, D. W. &Lichtenstein, L. M. (1982) Role of receptor aggregation in triggering IgE-mediated reactions.Fed. Proc. 41, 12–7.PubMedGoogle Scholar
  31. Kanwar, U. &Kansal, M. (1980) Cytochemical studies on the prostate glands of the trematodes,Paramphistomum epiclitum andParadistomoides orientalis.J. Helminthol. 54, 263–6.PubMedCrossRefGoogle Scholar
  32. Kruger, P. G., Lagunoff, D. &Wan, H. (1980) Isolation of rat mast cell granules with intact membranes.Exp. Cell. Res. 129, 83–93.CrossRefPubMedGoogle Scholar
  33. Kowk, R. &Evans, E. (1981) Thermoelasticity of large lecithin bilayer membrane vesicles.Biophys. J. 35, 637–52.CrossRefGoogle Scholar
  34. Lagunoff, D. (1973) Membrane fusion during mast cell secretion.J. Cell Biol. 57, 252–9.CrossRefPubMedGoogle Scholar
  35. Langmuir, I. &Waugh, E. F. (1938) The adsorption of proteins at oil-water interfaces and artificial proteinlipoid membranes.J. Gen. Physiol. 21, 745–55.CrossRefGoogle Scholar
  36. Lawson, D. (1980) Rat peritoneal mast cells: a model system for studying membrane fusion.Membrane-Membrane Interactions (edited byGilula, N. B.), pp. 27–44. New York: Raven Press.Google Scholar
  37. Lawson, D., Raff, M. C., Gomperts, B., Fewtrell, C. &Gilula, N. B. (1977) Molecular events during membrane fusion.J. Cell Biol. 72, 242–59.CrossRefPubMedGoogle Scholar
  38. Lichtenberg, D., Freire, E., Schmidt, C. F., Barenholz, Y., Felgner, P. L. &Thompson, T. E. (1981) Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoly-phosphatidylcholine single lamellar vesicles.Biochemistry 20, 3462–67.CrossRefPubMedGoogle Scholar
  39. Marcus, A. J., Ulman, H. L. &Safier, L. B. (1969) Lipid composition of subcellular particles of human blood platelets.J. Lipid Res. 10, 108–14.PubMedGoogle Scholar
  40. Metcalfe, D. D., Kaliner, M., &Donlon, M. A. (1981) The mast cell.CRC Crit. Rev. Immunol. 3, 23–74.Google Scholar
  41. Metzger, H., Goetze, A., Kanellopoulos, J., Holowka, D. &Fewtrell, C. (1982) Nature of the high-affinity mast cell receptor for IgE.Fed. Proc. 41, 8–11.PubMedGoogle Scholar
  42. Meuller, P. O., Rudin, D. O., ti Tien, H. &Wescott, W. C. (1962) Reconstitution of excitable cell membrane structurein vitro.Circulation,26, 1167–70.Google Scholar
  43. Mylrote, R. &Konig, H. (1971) Soluble acidic lipoprotein components of adrenomedullary chromaffin granules. Relations to chromagranins.FEBS Let. 12, 121–4.CrossRefGoogle Scholar
  44. Nagpal, N. &Kanwar, U. (1981) The poison gland in the centipedeOtostigmus Ceylonicus: Morphology and cytochemistry.Toxicon 19, 898–901.CrossRefPubMedGoogle Scholar
  45. Ohki, S. (1984) Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion.J. Membrane Biol. 77, 265–75.CrossRefGoogle Scholar
  46. Palade, G. (1975) Intracellular aspects of the process of protein synthesis.Science 189, 347–58.PubMedGoogle Scholar
  47. Plattner, H., Matt, H., Kersken, H., Haacke, B. &Sturzl, R. (1984) Synchronous exocytosis inParamecium cells. I. A novel approach.Exp. Cell Res. 151, 6–13.CrossRefPubMedGoogle Scholar
  48. Rohlich, P., Anderson, P. &Uvnas, B. (1971) Electron microscope observations on compound 48/80-induced degranulation in rat mast cells.J. Cell Biol. 51, 465–83.CrossRefPubMedGoogle Scholar
  49. Rothman, J. E. &Lenard, J. (1977) Membrane asymmetry.Science 195, 743–53.PubMedGoogle Scholar
  50. Schmauder-Chock, E. A. &Chock, S. P. (1987a) Mechanism of secretory granule exocytosis: Can granule enlargement precede pore formation?Histochem. J. 19, 413–8.CrossRefPubMedGoogle Scholar
  51. Schmauder-Chock, E. A. &Chock, S. P. (1987b) New membrane assembly during exocytosis.Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America (edited byBailey, G. W.), pp. 782–3. San Francisco: San Francisco Press.Google Scholar
  52. Schmauder-Chock, E. A. &Chock, S. P. (1989) The localization of cyclo-oxygenase and prostaglandin E2 in the secretory granule of the mast cell.J. Histochem. Cytochem. 37, 1319–28.PubMedGoogle Scholar
  53. Sheetz, M. P. &Chan, S. I. (1972) Effect of sonication on the structure of lecithin bilayers.Biochemistry 11, 4573–81.CrossRefPubMedGoogle Scholar
  54. Simson, J. A. V., Gall, B. J. &Spicer, S. S. (1973) Histochemical evidence for lipoidal material in secretory granules of rat salivary glands.Histochem. J. 5, 239–54.CrossRefPubMedGoogle Scholar
  55. Small, D. M. (1967) Phase equilibria and structure of dry and hydrated egg lecithin.J. Lipid Res. 8, 551–7.PubMedGoogle Scholar
  56. Tanford, C. (1980)The hydrophobic effect: Formation of micelles and biological membranes. 2nd edn. pp. 1–127. New York: John Wiley & Sons, Inc.Google Scholar
  57. Uvnas, B. (1982) Mast Cell Granules.The Secretory Granules (edited byPoisner, A. M. &Trifaro, J. M.), pp. 357–84. Amsterdam: Elsevier Biomedical Press.Google Scholar
  58. White, J. G. &Krivit, W. (1966) The ultrastructural localization and release of platelet lipids.Blood 27, 167–86.PubMedGoogle Scholar
  59. Wilgram, G. F. &Kennedy, E. P. (1963) Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids.J. Biol. Chem. 238, 2615–9.PubMedGoogle Scholar
  60. Yeagle, P. L., Hutton, W. C., Martin, R. B., Sears, B. &Huang, C. (1976) Transmembrane asymmetry of vesicle lipids.J. Biol. Chem. 251, 2110–12.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • E. A. Schmauder-Chock
    • 1
  • S. P. Chock
    • 2
  1. 1.Department of Experimental HematologyArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Laboratory of Neurochemistry, NINCDSNIHBethesdaUSA

Personalised recommendations