Advertisement

Arkiv för Matematik

, Volume 16, Issue 1–2, pp 11–27 | Cite as

On the density theorems of Borel and Furstenberg

  • Martin Moskowitz
Article

Keywords

Finite Volume Real Eigenvalue Density Theorem Linear Action Algebraic Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., Density properties for certain subgroups of semi-simple groups without compact components,Ann. of Math. 72 (1960), 179–188.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dixmier, J., L'application exponentielle dans les groupes de Lie résolubles,Bull. Soc. Math. France 85 (1957), 113–121.MATHMathSciNetGoogle Scholar
  3. 3.
    Furstenberg, H., A note on Borel's density theorem,Proc. Amer. Math. Soc. 55 (1976), 209–212.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenleaf, F., Moskowitz, M., Rothschild, L., Unbounded conjugacy classes in Lie groups and the location of central measures,Acta Math. 132 (1974), 225–243.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greenleaf, F., Moskowitz, M., Rothschild, L., Compactness of certain homogeneous spaces of finite volume,Amer. J. Math. 97 (1975), 248–259.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Greenleaf, F., Moskowitz, M., Rothschild, L., Automorphisms, orbits, and homogeneous spaces of non-connected Lie groups,Math. Ann. 212 (1974), 145–155.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hochschild, G.,The structure of Lie groups, Holden-Day, San Francisco (1965).MATHGoogle Scholar
  8. 8.
    Humphreys, J.,Linear algebraic groups, Springer-Verlag, Berlin (1975).MATHGoogle Scholar
  9. 9.
    Moskowitz, M., Some results on automorphisms of bounded displacement and bounded cocyclesto appear.Google Scholar
  10. 10.
    Mostow, G. D., Factor spaces of solvable groups,Ann. of Math. 60 (1954), 1–27.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Raghunathan, M. S.,Discrete subgroups of Lie groups, Springer-Verlag, Berlin (1972).MATHGoogle Scholar
  12. 12.
    Saito, M., Sur certains groupes de Lie résolubles,Sci. Papers College Gen. Ed. Univ. Tokyo 7 (1957), 1–11.MATHGoogle Scholar
  13. 13.
    Saito, M., Sur certains groupes de Lie résolubles II,Sci. Papers College Gen. Ed. Univ. Tokyo 7 (1957), 157–168.MATHGoogle Scholar
  14. 14.
    Wang, S. P., Homogeneous spaces with finite invariant volume,Amer. J. Math. 98 (1976), 311–324.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1978

Authors and Affiliations

  • Martin Moskowitz
    • 1
  1. 1.Graduate CenterThe Graduate School and University Center of the Univ. of New YorkNew YorkUSA

Personalised recommendations