Journal of Radioanalytical and Nuclear Chemistry

, Volume 235, Issue 1–2, pp 151–157 | Cite as

Radioactivity on the Montenegrin Coast, Yugoslavia

  • P. Vukotić
  • G. I. Borisov
  • V. V. Kuzmič
  • N. Antović
  • S. Dapčević
  • V. V. Uvarov
  • V. M. Kulakov
Environmental Radioactivity

Abstract

Environmental radioactivity has been investigated on the Montenegrin Coast (Yugoslavia). Radioactivity was measured on 14 beaches and 5 hinterland localities by a method of in situ gamma-spectrometry. At each measuring site two photon countings were performed — in ground and above it. Specific activities of40K,232Th,238U,137Cs and corresponding exposure rates were then obtained from gamma-spectra and appropriate radiation field models. The results show a washing out effect of the sea-water: radioactivity level on the beach is significantly lower than on its hinterland. In situ spectrometry was also performed inside 16 hotels on the Coast. Radioactivity of building materials is found to be 8 to 20 times lower than the limit permitted by regulations. In 12 of these hotels, indoor radon concentrations were measured with track etch detectors. Winter radon concentrations were in a range (22–90) Bq/m3, i.e., much below the most stringent reference level.

Keywords

Radiation Beach Radon Building Material Radiation Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Macdonald, P. H. Smith, D. J. Assinder, J. Radiol. Prot., 16 (1996) 115.CrossRefGoogle Scholar
  2. 2.
    R. M. Kogan, I. M. Nazarov, Š. D. Fridman, Osnovi gamaspektrometrii prirodnih sred, Energoatomizdat, Moskva 1991.Google Scholar
  3. 3.
    H. L. Beck, J. A. De Campo, C. V. Gogolak, In situ Ge(Li) and Na(T1) gamma-ray spectrometry, HASL-258, 1972.Google Scholar
  4. 4.
    J. L. Dobrinin, V. V. Kuzmič, Metod poljevoj poluprovodnikovoj gama-spektrometrii dlja radioekologicheskih isledovaniji (realizacija raschetnjih modeli), preprint IAE-4899/1, Moskva 1989.Google Scholar
  5. 5.
    H. L. Beck, Exposure rate conversion factors for radionuclides deposited on the ground, USDOE EML-378, New York, 1980.Google Scholar
  6. 6.
    I. K. Helfer, K. M. Miller, Health Phys., 55 (1988) 15.Google Scholar
  7. 7.
    W. Haimeri, S. Wolff, S. Weimer, Kalibrierung eines in-situ Spektrometer (Praktische Anleitung), ABE-237, 1986.Google Scholar
  8. 8.
    K. M. Miller, H. L. Beck, Radiat. Protect. Dosim., 7 (1984) 185.Google Scholar
  9. 9.
    E. M. Krisjuk, Radijacioni fon pomescenija, Energoatomizdat, Mosckva 1989.Google Scholar
  10. 10.
    V. V. Uvarov, V. M. Kulakov, Radiat. Meas., 25 (1995) 587.CrossRefGoogle Scholar
  11. 11.
    V. V. Uvarov, V. M. Kulakov, P. Vukotic, S. Dapčevic, N. Saveljic, I. Picuric, A. M. Marenny, A. S. Voroztsov, N. A. Nefedov, N. Antovic, First results of radon survey in Montenegro (Yugoslavia). Rare Gas Geochemistry — applications in earth & environmental sciences,H. S. Virk (Ed.), Guru Nanak Dev University, Amritsar, India, 1997, p. 283.Google Scholar
  12. 12.
    The United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionizing radiation, UNSCEAR Report, United Nations, New York, 1988.Google Scholar
  13. 13.
    The International Commission on Radiological Protection, Protection against Radon-222 at Home and at Work, ICRP Publication 65, 1994.Google Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • P. Vukotić
    • 1
  • G. I. Borisov
    • 2
  • V. V. Kuzmič
    • 2
  • N. Antović
    • 1
  • S. Dapčević
    • 1
  • V. V. Uvarov
    • 2
  • V. M. Kulakov
    • 2
  1. 1.Faculty of SciencesUniversity of MontenegroPodgoricaYugoslavia
  2. 2.Russian Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations